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Dr Brian Ross, Editor
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Re: MC-RES-07-295.R1

Dear Dr Ross:

Thank you very much for your action letter and acceptance of our manuscript “Strategy 

Development and Learning Differences in Supervised and Unsupervised Categorization” pending 

revision. Your comments were both interesting and very useful in our current revision, and we 

hope we have addressed the two main issues of paradigm and manuscript length to your approval.

Concerning paradigm clarification, we thank you for pointing out the concerns that readers 

may have. We have softened our conclusions in response, and we hope that our paper now 

evokes further thoughts and discussion rather than strong disagreement in readers.

Concerning length of the manuscript, we have endeavoured to remove all excess 

information. We have managed to condense the manuscript into a more succinct 24 pages of text

(with six figures), which is equivalent in length to the last reviewed submission, and 15% shorter 

than the accepted revision. We hope that this fulfils the length requirements expressed in your 

action letter.

We are grateful for your acceptance of this paper and we thank you again for your 

comments and suggestions throughout this review process.

Sincerely,

Erin Colreavy
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Unsupervised Categorization 2

Abstract

The processes that determine unsupervised categorization, the task of classifying stimuli without 

guidance or feedback, are poorly understood. Two experiments examined the emergence and 

plasticity of unsupervised strategies using perceptual stimuli that varied along two separable 

dimensions. In the first experiment, participants either classified stimuli into any two categories 

of their choice or learned identical classifications by supervised categorization. Irrespective of the 

complexity of classification, supervised and unsupervised learning rates differed little when both 

modes of learning were maximally comparable. The second experiment examined the plasticity of 

unsupervised classifications by introducing novel stimuli half-way through training. Irrespective 

of whether or not people altered their strategies, they responded to novel stimuli in a gradual 

manner. The gradual and continuous evolution and adaptation of strategies suggests that 

unsupervised categorization involves true learning which shares many properties of supervised 

category learning. We additionally show that the choice of unsupervised strategy cannot be 

predicted from the properties of early learning trials but is best understood as a function of the 

initial distribution of dimensional attention.
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Unsupervised Categorization 3

Strategy Development and Learning Differences in 

Supervised and Unsupervised Categorization

To date, most laboratory research on categorization has focused on supervised category 

learning; that is, acquisition of a pre-determined category structure, such as when medical 

students learn to classify diseases by their symptoms. However, we must often categorize objects 

in the absence of any “right” or “wrong” answer. For example, how people divide their e-mails 

into “interesting” versus “spam” is completely personal, with no external error correction or pre-

determined classification (Gureckis & Love, 2003). Some theoreticians have considered this self-

directed or unsupervised categorization to be a fundamental component of all forms of 

categorization (e.g., Schyns, 1991). Notwithstanding, unsupervised categorization has attracted 

relatively little attention and the underlying processes are not well understood (Love, Medin, & 

Gureckis, 2004). Likewise, although several models of unsupervised categorization have been 

proposed (Clapper & Bower, 1991, 1994; Fried & Holyoak, 1984; Love et al., 2004; Pothos & 

Chater, 2002), their explanatory power does not rival those for supervised categorization.

Several important questions about unsupervised categorization remain unresolved, such as

why people decide on one classification rather than another and how exactly they acquire their 

chosen strategy in the absence of feedback. Do people randomly pick a classification strategy or 

do they learn to categorize, comparable to supervised categorization? If unsupervised 

classification involves learning, how does it differ from supervised learning? How responsive is 

unsupervised categorization to alterations in the environment? We present two experiments that 

sought answers to these basic questions about unsupervised categorization.

Concerning the choice of classification strategy, a common hypothesis is that people seek to 

create “simple” structures. For example, using colored discs as stimuli, Imai (1966) found that 

people preferred a smaller number of categories to a multitude of groups; that they preferred 

categories with equal numbers of stimuli; and that they tended to focus on one dimension along 
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Unsupervised Categorization 4

which to divide stimuli. The latter observation was confirmed by Ashby, Queller, and Berretty 

(1999), who showed that people could classify perceptual stimuli based on either one of two 

dimensions (length and orientation of lines), but were unable to discover an experimenter-

designated classification involving variation along both dimensions.

More recently, Pothos and Chater (2002) proposed that unsupervised categorization was 

governed by simplicity, as defined by the shortest possible coding—in terms of bits in the 

Minimum Description Length (MDL)—of the inequalities between all pairwise relationships 

among stimuli. Because within-category similarities are, by near-axiomatic assumption (Pothos & 

Chater, 2005), expected to be greater than between-category similarities, the creation of 

categories reduces the overall number of inequalities that need to be specified, thus potentially 

providing a more efficient description. In several experiments, Pothos and Chater (2002) showed 

that people generally but not exclusively preferred simple classifications to more complex ones.

The idea of simplicity is also embodied in a current computational model of supervised and 

unsupervised categorization, known as SUSTAIN (Supervised and Unsupervised STratified 

Adaptive Incremental Network; Love et al., 2004). According to SUSTAIN, categorization begins 

with all stimuli assigned to the same group, and categories are added only as necessary in 

response to a “surprising” event. In unsupervised categorization, a surprising event is a new 

stimulus that mismatches current knowledge.

Other existing proposals are mute about how people acquire classification strategies. For 

example, Pothos and Chater’s (2002) simplicity principle is oblivious to the dimensions that 

define stimuli (such as size or color of a rectangle) because it is exclusively concerned with 

inequalities between pairwise similarities. Moreover, the simplicity principle—and much of the 

supporting research—only applies to situations in which the number of categories is 

unconstrained and in which all stimuli are visible simultaneously. Simultaneous presentation 

precludes any examination of learning because the order in which people process stimuli remains 
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Unsupervised Categorization 5

unknown. Sequential presentation, by contrast, not only permits assessment of learning over time

but by implication also permits a comparison of supervised and unsupervised classification.

Existing studies using sequential presentation have answered a limited set of questions. 

Haubensak (1992) showed that categorical judgments about stimuli were made early on, after 

only a few trials. Ashby et al. (1999) likewise noted that uni-dimensional strategies were rapidly 

acquired during a single block of 80 unsupervised trials, although their analysis provided only a 

coarse measure of learning. Moreover, neither Haubensak nor Ashby et al. compared supervised 

to unsupervised learning. We know of only one such comparison: Love (2002) presented 

participants with four-dimensional stimuli. Supervised participants were trained on one of four 

classifications, ranging in complexity from uni-dimensional, to two- dimensional, to no regularity 

(i.e., instances had to be memorized). Unsupervised participants observed the stimuli or rated 

them for pleasantness, followed by a recognition test. Complexity affected supervised learning in 

the expected manner, whereas for the unsupervised participants, the classification in which all 

dimensions were required turned out to be easier to learn than the simpler, two-dimensional 

strategy. However, the study permits only limited conclusions because for the unsupervised 

participants, learning was measured by a recognition test rather than categorization responses. 

The paradigm used in our studies differs from precedents by permitting the simultaneous 

examination of people’s choice of classification strategy while also tracing the trial-by-trial 

acquisition of the chosen strategy. To date, examinations of learning have usually precluded 

simultaneous examination of the choice of strategy: Experimenters typically designed stimuli 

with an underlying but hidden rule and tested people’s ability to acquire that experimenter-

designated “correct” rule (e.g., Ashby et al., 1999, Billman & Knutson, 1996). When people were 

found not to use the hidden rule favored by the experimenter, as in the multi-dimensional 

condition of Ashby et al. (1999), participants were deemed unable to learn that strategy. We argue 

against this view because it fails to acknowledge the possibility that although people may “fail” to 

classify the stimuli in ways anticipated or preferred by the experimenter, they may nonetheless 
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Unsupervised Categorization 6

learn a perfectly legitimate alternative strategy. Our point is best illustrated by a study by 

anthropologist Joe Glick (1968; cited in Triandis & Berry, 1980; see also Cronbach, 1990), who 

asked Liberian Kpelle farmers to categorize stimuli involving food items and utensils. A “mature” 

categorization, according to Western ideals, divides the stimuli into the two categories “food 

items” and “utensils.” Contrary to that expectation, Kpelle farmers paired each food stimulus with 

its appropriate utensil, thus grouping the stimuli in pairs, an arrangement considered “immature” 

by some (cf. Triandis & Berry, 1980). We argue instead that the only difference between these 

classifications is that one was expected by the experimenter whereas the other one was not.

In our studies, we did not constrain people’s choice of classification and encouraged a wide 

range of choices by using a fairly homogeneous set of stimuli. We nonetheless examined learning 

of a person’s chosen strategy across trials, without reference to an experimenter-designated but 

hidden “correct” solution. Moreover, to place that learning into context, we contrast the dynamics 

of the emergence of unsupervised categorization strategies to supervised category learning. 

Our first experiment compared unsupervised and supervised categorization under identical 

conditions. Stimuli varied along two perceptually separable dimensions, one of which was binary 

(i.e., consisting of two levels) and the other quinternary (i.e., 5 levels). Stimuli were presented 

sequentially one at a time and remained visible until a classification judgment had been made. In 

the unsupervised condition, people were free to classify stimuli into any two categories of their 

choosing; in the (yoked) supervised condition, people were trained on the observed unsupervised 

classifications using corrective feedback. In our second experiment, we focused on unsupervised 

learning and examined how people adapted their strategies in response to novel stimuli.

Based on previous results (e.g., Pothos & Chater, 2002), we expected some heterogeneity 

among people’s unsupervised strategies, albeit with a preference for unidimensional 

classifications (e.g. Ashby et al., 1999; Imai, 1966; Milton & Wills, 2004). Accordingly, another 

focus of our analyses was on identifying predictors for unsupervised strategies based on
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Unsupervised Categorization 7

properties of the initial training stimuli. To maximize statistical power, this analysis involves data 

from both studies and is reported after the experiments.

Experiment 1

Experiment 1 compared unsupervised and supervised categorization across two yoked 

groups of participants. Because supervised training involved the classifications used by the 

unsupervised group, all unsupervised participants were tested first.

Method

Apparatus and Stimuli

The experiment was controlled by a Windows PC using a Matlab program written with the 

aid of the Psychophysics Toolbox (Brainard, 1997; Pelli, 1991).

The stimuli were squares of different sizes and shadings of gray similar to those used by 

Goldstone (1994). The stimuli comprised a 5 × 5 matrix of squares formed by orthogonally 

varying size and brightness. The square sizes were 3, 6, 9, 12, and 15 cm and the levels of 

brightness (or luminance; measured with a photometer) were 0.6, 1.5, 3.6, 8.1 and 14.5 candelas.

Figure 1 shows the multi-dimensional scaling (MDS) solution for the stimuli obtained from a 

group of 10 participants who provided pairwise similarity ratings (using KYST, Kruskal, Young, 

& Seery, 1978, with a city-block distance metric, Stress = .16). As expected, the MDS solution 

mirrored the stimulus layout almost perfectly, with the columns in the figure corresponding to 

squares of different sizes and the rows corresponding to different brightnesses. The MDS solution 

confirmed that separations between stimuli were roughly equidistant along both dimensions.

Each participant was trained on 10 unique stimuli in one of two combinations, either 

involving two different sizes fully-crossed with 5 brightness values (size-binary) or vice versa 

(brightness-binary). In the size-binary combination, only the smallest two squares were used, each 

combined with all 5 levels of brightness (see dashed box in Figure 1). Conversely, the brightness-

binary combination used the two darkest squares and all 5 sizes (dotted box in Figure 1). People 
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Unsupervised Categorization 8

within each condition were randomly assigned to the size-binary or brightness-binary 

combination. (Initial analyses showed that the size-binary and brightness-binary combinations did 

not differ and all results are therefore reported collapsed across this counter-balancing measure.) 

Participants

One hundred and eight undergraduates (67 female, mean age 19.2 years) at the University of 

Western Australia participated in return for course credit. Fifty one participants were assigned to 

the unsupervised condition and 55 participants to the supervised condition (a further two 

supervised participants did not exceed chance during training and were omitted from analysis.)

Participants in the supervised condition were randomly assigned to be trained on one of the 

unsupervised strategies, with between 9 and 11 participants in each group (discussed later).

Procedure

In both conditions, there were 10 blocks of training, each involving a new randomized 

sequence of the 10 stimuli. On each trial, a stimulus was presented in the center of the screen. 

Unsupervised participants were instructed to create two categories that seemed natural and 

intuitive and were told that there was no correct or incorrect answer. Responses were made using

the ‘a’ and ‘l’ keys to assign each stimulus to one of the two categories, arbitrarily labeled 

“Category A” and “Category B.” No feedback was presented and trials were separated by 1 s.

The supervised condition was identical except that each response was followed by corrective 

feedback. The feedback consisted of the word “Correct” or “Wrong” appearing in the centre of 

the screen for 1 s. The nature of the feedback depended on the category to which a given stimulus 

was assigned; this assignment, in turn, depended on the training group—yoked to an unsupervised 

classification strategy—to which the participant had been assigned.

Results and Discussion

Unsupervised Strategy Identification

To permit unambiguous strategy identification, stimuli were deemed to belong to the 
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Unsupervised Categorization 9

category to which they were assigned most often (or last, if the proportions were equal).1 Because 

unsupervised category labels were arbitrary, we reverse-coded responses where necessary to 

ensure consistent identification of classifications. For example, all participants who used the 

binary dimension were considered to have acquired the same strategy irrespective of whether the 

larger or the smaller (or brighter or darker) squares were called “A.”

Of the 48 unsupervised participants retained for analysis, 17 (35%) elected to categorize 

along the binary dimension. Another 17 participants (35%) categorized along the quinternary 

dimension, using any one of the four possible ways in which this dimension could be divided.

The majority of these quinternary categorizers attempted roughly even divisions, placing the 

boundary between groups of two and three dimensional values. A further 5 participants (10%) 

chose multi-dimensional boundaries. These categorizations were so similar to the quinternary 

classifications (differing only by the assignment of a single stimulus) that all remaining analyses 

considered them together with the quinternary categorizers. None of the conclusions are altered if 

multi-dimensional categorizers are considered separately.2

The three strategies just discussed—i.e., binary, quinternary, and multi-dimensional—

formed the basis for training in the supervised condition (with quinternary training involving a 

classification that placed the category boundary after the first two dimensional values.)

Supervised and Unsupervised Learning

Learning over trials. In supervised categorization, accuracy of responding provides 

an unambiguous measure of performance. In unsupervised categorization, our favored analogue

measure consisted of the consistency of a person’s responses, during the course of training, with 

their ultimate categorization strategy. We traced learning by considering the proportion of 

responses in trials 1-3, 3-5, 8-10, and 18-20 that matched the strategies that were either ultimately 

adopted (for the unsupervised participants) or trained (supervised participants). Using these 

measures, we present two perspectives on the course of learning in the two conditions.
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Unsupervised Categorization 10

Figure 2 shows the mean matching proportions for binary (top panel) and quinternary 

(bottom panel) categorizers. Each panel in the figure shows clear differences between supervised 

and unsupervised performance. After only three trials, the unsupervised categorizers match their 

ultimate strategy far more consistently than their supervised counterparts, suggesting that people 

settle on their preferred unsupervised classification very early on, whereas supervised learning 

occurs considerably more slowly. This difference appears somewhat more marked for the binary 

categorizers. In confirmation, a 2 (Condition: unsupervised vs. supervised) × 2 (Strategy: binary 

vs. quinternary) × 4 (Trial: 3, 5, 10, 20) between-within ANOVA revealed small to moderate

significant main effects of trial, F(3, 276) = 27.61, p < .05, η2 = .23, MSE = .05 and condition,

F(1, 92) = 10.52, p < .05, η2 = .10, MSE = .13. The interaction between Strategy and Trial

approached significance, F(3, 276) = 2.12, p = .10, η2 = .02, MSE = .05. 

One unique aspect of unsupervised categorization is that, unlike in feedback-driven learning, 

a person’s first response can never be “incorrect.” That is, irrespective of subsequent stimuli and 

irrespective of a person’s final strategy, the first response provides a “correct” category label and 

an anchor point for subsequent learning. In supervised learning, by contrast, the first response can 

serve this function only if it happens to be correct. To maximize comparability between 

conditions, we therefore also examined performance of only those supervised participants who, 

by chance, provided a correct response on the first trial (N = 8 out of 20 for binary and N = 22 out 

of 39 for quinternary). A 2 (Condition: unsupervised vs. supervised—first response correct) × 2 

(Strategy) × 4 (Trial) between-within ANOVA revealed a main effect of trial only, F(3,189) = 

15.15, p < .05, η2 = .19, MSE = .04, with none of the other effects being significant. The analysis 

suggests that the differences between supervised and unsupervised learning are largely eliminated 

when the role of the first response is equalized between conditions.

The implications of this second analysis can be illuminated further by plotting performance 

over trials with respect to both principal strategies (i.e., binary and quinternary). That is, for each 
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Unsupervised Categorization 11

set of trials (1-3, 3-5, 8-10 and 18-20, as before), the proportions of responses that matched each 

participant’s own strategy (whether trained by feedback or adopted without supervision) were 

plotted against the proportion of responses that matched the alternative strategy. For quinternary 

categorizers, responses were matched to their chosen strategy and the alternative binary strategy; 

for binary categorizers, matching-proportions were averaged across all four possible quinternary 

alternative strategies before being plotted against the binary matching-proportions. Figure 3

displays the progress of learning from the first set of trials (large plotting symbols) along the path 

indicated by arrows until asymptote is reached (trials 18-20, last plotting symbol in sequence of 

arrows). The top panel displays the path diagrams for the binary categorizers, and the bottom 

panel shows the paths for the quinternary categorizers. In both panels, the paths originate fairly 

centrally and then migrate towards a matching proportion of 1.0 for the chosen strategy, with a 

concomitant decrease of the match to the alternative strategy. The figure shows that when only 

the supervised participants whose first response was correct are considered, their learning occurs 

at roughly the same rate and follows a nearly identical path as unsupervised strategy acquisition.

Category Switches. The path diagrams demonstrate how participants’ categorizing becomes 

more aligned with a particular strategy over time. However, the path diagrams cannot illuminate 

whether people initially flip back and forth between alternative strategies (e.g., alternately using 

the binary and quinternary dimension) or whether they use a single dimension throughout but 

learn to use it more consistently. This question can be resolved by examining responses to 

dimensional changes between successive stimuli. This analysis considered the proportion of times 

that people placed two consecutive stimuli into different categories as a function of the pair-wise 

difference in the quinternary dimension value. The proportion of category switches was computed 

for each condition and each strategy separately, using three “snapshots” at trials 1-5, trials 8-12 

and trials 16-20. These observed proportions can then be compared to “predicted” proportions: 

For unsupervised participants, the predicted proportions are those that would be obtained if that 

participant categorized the particular trial sequence in perfect accordance with the final strategy. 
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Unsupervised Categorization 12

For supervised participants, the predicted proportions are derived from the reinforced stimulus 

sequences for each participant.3 Figure 4 shows the proportion of category switches for the binary 

(top row of panels) and quinternary (bottom row of panels) categorizers, with each column of 

panels corresponding to one of the three trial periods. Within each panel, we show the results for 

unsupervised (solid lines) and supervised (dashed lines) participants. 

For binary categorizers (top panels), any difference in quinternary value should instigate a 

category shift only if it is accompanied by a difference in binary value; hence the predicted switch 

proportion (represented by dotted lines) is 0.5 regardless of the quinternary value difference. At 

the outset of learning, shift proportions were quite haphazard, but by trials 16-20 they closely 

followed the predicted proportions. For binary categorizers the elevated switch proportion—and 

its increase over learning—when two successive stimuli share the same quinternary value (i.e., a 

difference of 0) is noteworthy. Because presentation was randomized within each block, 

repetition of a quinternary value was more likely to be accompanied by the other binary value; 

hence binary participants were increasingly more likely to switch categories when two successive 

stimuli had the same quinternary value. Turning to the quinternary categorizers, the unsupervised 

participants conformed to the predicted switching proportions from very early on.

A 2 (Condition) × 2 (Strategy) × 3 (Trial period) × 5 (Quinternary value difference) between-

within ANOVA found a significant main effect of quinternary value difference, F(4, 72) = 6.44, p

< .05, η2 = .26, MSE = .04. A significant interaction between value difference and condition was 

small, F(4, 72) = 2.71, p < .05, η2 = .13, MSE = .04, and between value difference and 

categorization strategy was large, F(4, 72) = 29.34, p < .05, η2 = .62, MSE = .04.

In summary, the fact that the first five trials exhibit proportions that are already beginning to 

resemble the predicted switching curves strongly suggests that participants have selected their 

relevant dimension by this point. This suggests that participants do not waver between 
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Unsupervised Categorization 13

dimensions early in the task, but gradually learn more about the dimension that is relevant to their 

final strategy.

We recognize that unsupervised and supervised learning are not entirely comparable in our 

study. To begin with, unsupervised participants are choosing their own strategy, whereas the 

supervised participants are learning a strategy that is not necessarily of their own preference. In 

addition, supervised participants have the advantage of feedback which by definition is absent in 

the unsupervised task. Nonetheless, we find it noteworthy that performance is remarkably similar 

between the two modes of learning when other differences are controlled to the extent possible.

Learning vs. guessing. One might argue that unsupervised strategy acquisition in our study 

did not represent true “learning” but instead reflected mere guessing. Specifically, people might 

have randomly picked a dimension along which to categorize during the first few trials and may 

have used that dimension for all remain ing stimuli without learning anything about the category 

structure.4 We argue against this possibility for several reasons. 

First, one implication of this guessing view is that if people randomly pick the binary 

dimension, their performance should be virtually perfect within a few trials because memory for 

only two dimensional values would permit flawless classification. The data provide little support 

for this possibility, because neither the Strategy × Trial × Condition nor the Strategy × Condition 

interactions that would be expected on the basis of rapid and flawless acquisition of the binary 

strategy reached conventional levels of significance. 

Second, a guessing-based explanation begs the question as to how people classify stimuli 

along the quinternary dimension. That is, even if the dimension were picked at random, this by 

itself does not obviate the need for a boundary placement; we are unable to conceive how this 

could be achieved without some form of learning of the stimuli and differentiation between them.  

Third, if unsupervised strategy acquisition involves a guessing process that is distinct from 

supervised (or any other form of) learning, then it is difficult to explain why the two modes of
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Unsupervised Categorization 14

learning became indistinguishable in the first-response-correct analysis. This analysis is more 

compatible with the view that both modes involve learning.

Finally, a guessing-based account would likely predict that people remain indifferent to any 

changes in the stimuli once they have settled on a pattern of responding. By contrast, if 

unsupervised categorization involved a mechanism similar to supervised learning, people would 

remain sensitive to changes in the stimuli throughout learning. Experiment 2 examined this issue.

Experiment 2

In supervised categorization, it is well known that people can adapt to changes to the 

category space. For example, Kruschke (1996) showed successful adaptation to an unannounced 

shift in category structure, regardless of whether this shift involved a simple reversal of category

labels or a more difficult strategy involving a previously irrelevant dimension (see Macho, 1997, 

for related results). Shifts in supervised categorization can also be obtained by providing an 

explicit hint partway through training, without any alteration of the stimuli (e.g., Kalish, 

Lewandowsky, & Davies, 2005; Lewandowsky, Kalish, & Griffiths, 2000). Overall, it is clear 

that supervised learning remains sensitive to a variety of external influences. 

By contrast, little is known about the plasticity of unsupervised categorization, although 

there are reasons to expect people to respond to changes in the stimuli. For example, SUSTAIN 

(Love et al., 2004) postulates that people recruit a new category cluster on the basis of “surprise”; 

that is, the extent to which a novel stimulus differs from others seen up to that point. However, 

unlike in supervised categorization, we know of no experimental investigation of the plasticity of 

unsupervised learning; Experiment 2 provides a first step towards examination of this issue.

Method

Experiment 2 consisted of two phases of unsupervised trials. The first phase was a partial 

replication of Experiment 1, using only the size-binary combination of stimuli. In the second 

phase, additional training stimuli were recruited from the full category space in Figure 1, with the 

selection of novel stimuli differing across between-subjects conditions. In all conditions, the 
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Unsupervised Categorization 15

formerly binary size dimension was augmented by adding either one or two novel sizes of stimuli 

(each involving all 5 values of the quinternary dimension). The novel sizes were either contiguous 

with the sizes used in Phase 1, or skipped a size in order to create a dimensional discontinuity, 

with number and contiguity of the new sizes being fully crossed to yield four conditions. 

These conditions were chosen to provide a broad range of opportunities for boundary 

adjustment and followed two suggestive precedents. First, Imai (1966) found that people 

preferred to create groups of equal size; this preference cannot be maintained with an original 

(binary) category boundary when the binary dimension turns into a ternary or quaternary 

dimension in Phase 2. People may thus be encouraged to adjust their boundary in order to re-

establish an equilibrium between categories. Second, Maddox, Filoteo, Lauritzen, Connally, and 

Hejl (2005) reported that categorization was affected by whether or not stimuli were contiguous 

along a dimension. Although their study involved supervised training, it nonetheless suggests that 

breaking the continuity of a dimension in Phase 2 may encourage participants to move their 

boundary to the highly-conspicuous discontinuity. 

Participants

A total of 98 participants (22 male; mean age = 20.2 years) were randomly assigned to one 

of four conditions: the extra-column condition (N = 22), the balance condition (N = 26), the gap 

condition (N = 26), and the balanced-gap condition (N = 24). 

Stimuli and Procedure

Phase 1 of this study was an exact replication of the unsupervised size-binary combination 

(i.e., involving the stimuli identified by dashed lines in Figure 1) in Experiment 1. Participants 

categorized unique 10 stimuli, formed by the orthogonal combination of two sizes and 5 levels of 

brightness. Each stimulus was shown 10 times, in a completely randomized order. 

Phase 2 involved novel stimuli of additional sizes, whose selection differed between 

conditions. In the extra-column condition, stimuli of the third-largest size were added, to create a 

stimulus set with 15 squares varying in 3 contiguous sizes × 5 levels of brightness. The balance
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Unsupervised Categorization 16

condition added the next two larger squares, yielding 4 contiguous sizes × 5 levels of brightness 

for a total of 20 stimuli. The gap and balanced-gap conditions, respectively, added squares of one 

or two additional sizes; however, they omitted the middle size. Thus the gap condition used 3 

sizes (columns 1, 2, and 4 in Figure 1) × 5 levels of brightness, and the balanced-gap condition 

involved 4 sizes (all but the middle column in Figure 1) × 5 levels of brightness.

Phases were separated by a self-timed break, and with the exception of the additional stimuli, 

the procedure of Phase 2 was identical to that of Phase 1. Owing to the differences in the number 

of stimuli across conditions, the extra-column and gap conditions involved 150 trials (in 

completely random order) in Phase 2, and the balance and balanced-gap condition involved 200. 

Participants were not alerted to the change of stimuli in Phase 2.

Results and Discussion

Strategy Identification

Categorization strategies were determined in the same manner as in Experiment 1 and were

considered separately for each phase and condition. Two participants were removed from 

consideration due to ambiguous categorizations.5 Two distinct strategies were identified for Phase 

1. As shown in Table 1, most participants used a binary strategy, with the remainder using the 

quinternary dimension.6 (In Table 1, dimensional values 1-5 correspond to rows or columns of 

stimuli in Figure 1, with the category boundary denoted by a “|”.)

During Phase 2, the inclusion of additional sizes allowed people to divide this initially-

binary dimension in a number of ways. About half of the participants who used the binary 

category boundary continued to do so in Phase 2 (“1 | others” in Table 1). One exception to this 

pattern involved the balanced-gap condition, in which fewer participants retained their original 

binary strategy. Most people in that condition moved their category boundary to the gap (“1 2 | 

others” in Table 1), suggesting that the combination of discontinuity and the ability to equalize 

category sizes encouraged people to revise their strategies. 
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Unsupervised Categorization 17

It is also worth noting that the brightness (quinternary) dimension attracted additional 

participants in Phase 2, suggesting that the introduction of new stimuli caused some people to 

switch from one dimension to the other. Overall, many participants in all conditions were

sensitive to the addition of new information and adapted their strategies in response.

Collapsing across conditions and classifying strategy shifts between the two phases, we 

identified four broad types of participants: Binary-binary categorizers (N = 24) continued to 

apply their original boundary between the smallest two sizes in Phase 2. Binary-adjust

categorizers (N = 30) continued to classify by size in Phase 2, but moved their category boundary 

from its original position to (or near) the center point of the now-extended dimension (i.e., 

between the second- and third-largest squares in the extra-column and balance conditions or 

between the second- and fourth-largest squares in the gap and balanced-gap conditions). Binary-

quinternary categorizers (N = 12) moved from the initially-binary dimension to one of the four 

possible quinternary strategies. Finally, quinternary-quinternary categorizers (N = 23) utilized a 

quinternary strategy in both Phases 1 and 2. Although the category boundary used by quinternary-

quinternary participants did occasionally move, we do not consider these few (N = 5) instances 

separately. A further 7 participants (including three who placed their category boundary between 

the largest two sizes in the balanced and balanced-gap conditions) did not fall into any of these 

four types and were excluded from further analyses.

The remaining analyses focus on the differences between these distinct classes of 

participants rather than the original experimental conditions.

Learning

Phase 1. As in Experiment 1, unsupervised learning was assessed by comparing performance 

on trials 1-3, 3-5, 8-10 and 18-20 to the strategy that each participant ultimately adopted. Figure 5

(top panel) shows the mean matching proportions for binary and quinternary categorizers. Similar 

to Experiment 1, both types of categorizers rapidly settled onto their final strategy and were 

performing at near-ceiling levels by trial 20. A 2 (Strategy) × 4 (Trial) between-within ANOVA 
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Unsupervised Categorization 18

(condition was not included as a factor because the conditions were identical during Phase 1)

yielded a significant main effect of trial, F(3, 282) = 22.23, p < .05, η2 = .19, MSE = .04, and an 

interaction between trial and strategy, F(3, 282) = 7.06, p < .05, MSE = .04. The interaction 

suggests that binary and quinternary categorizers learned the strategies at different rates; however, 

the size of this effect was quite small (η2 = .07).

Phase 2. People’s adaptation to the new stimuli was traced by analyzing the overlap between 

responses during the usual sets of trials to each individual’s original Phase 1 strategy (middle 

panel of Figure 5) and evolving Phase 2 strategy (bottom panel). The bottom panel shows that all 

Phase 2 strategies were acquired quite gradually, with the accompanying trade-off in terms of 

unlearning of the initial strategies shown in the middle panel. The unlearning data were entered 

into a 4 (Type of strategy shift) × 4 (Trial) between-within ANOVA, which revealed significant 

main effects of trial, F(3,255) = 3.68, p < .05, η2 = .04, MSE = .06, and strategy, F(3,85) = 4.08, 

p < .05, η2 = .13, MSE = .26, but no interaction between the two variables.

The apparent unlearning of binary-binary categorizers may appear surprising in light of the 

fact that their category boundary did not change; its existence is due to the fact that some 

participants (N = 5) reversed their category labels in Phase 2. This also occurred with a small 

number of quinternary-quinternary categorizers, who adjusted their boundary along their favored

dimension, resulting in a similar dip in their performance. It is worth noting that the binary-

quinternary participants not only exhibited the greatest extent of unlearning of their Phase 1 

strategy, but also performed worse than the other groups in Phase 2. This suggests that it takes 

considerable learning to re-establish a boundary along a different dimension from the one used in 

Phase 1. The binary-adjust categorizers, by contrast, were performing almost at the same level as 

people who did not change strategy. Changing from one dimension to another appears more 

detrimental to category learning than an adjustment of a boundary along the same dimension.
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Unsupervised Categorization 19

In confirmation, a 4 (Type of strategy shift) × 4 (Trial) between-within ANOVA on the data

in the bottom panel of Figure 5 found a significant main effect of strategy, F(3,85) = 25.13, 

p < .05, η2 = .47, MSE = .06, indicating that performance with novel stimuli varies depending on 

whether the original Phase 1 strategy is retained or abandoned. No other effects were significant.7

Transfer Performance

The first cycle of stimulus presentation in Phase 2 constitutes a transfer test of people’s 

knowledge after acquisition of their initial strategy and before they have adapted to the novel 

stimuli (ignoring the learning that may take place during the first presentation of the novel 

stimuli). Figure 6 shows the overall proportion of “A” responses to each of the size and brightness 

value combinations (in each case considering only those participants who were shown that 

particular stimulus as dictated by condition), collapsed across conditions and shown separately for 

people who used a binary (top panel) or quinternary strategy (bottom panel) in Phase 1.

Both panels show smooth and monotonic generalization gradients along the dimension used 

in Phase 1, suggesting that both groups begin Phase 2 by applying their original boundary in a 

manner that is consonant with generalization profiles observed in supervised categorization;

nonetheless, during further training, many of these participants changed their categories and thus 

demonstrably learned more about the stimulus structure.

Overall, the learning data converge on the conclusion that unsupervised categorization 

strategies evolve quickly but nonetheless gradually, and that they retain considerable plasticity in 

response to changes in the environment. On the basis of the present data and the reasoning offered 

in connection with Experiment 1, we therefore reject the idea that unsupervised responding is 

based on an initial random guess and we do not consider this option further. We argue instead that 

unsupervised strategy acquisition involves category learning in much the same way as supervised 

training. We return to a discussion of the differences and similarities between the two modes of 

learning after an analysis of potential determinants of unsupervised categorization strategies.
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Unsupervised Categorization 20

Determinants of Unsupervised Categorization Strategy

One goal of this article was to determine whether people’s choice of strategy could be 

predicted on the basis of properties of the initial training stimuli. To maximize power, we 

analyzed Experiment 1 (unsupervised condition) and Experiment 2 (Phase 1) together.

Analysis of Potential Predictors

When presented with the first of a novel set of stimuli for classification, very little 

information is available on which to base a response. Notwithstanding these impoverished 

circumstances, the first stimulus may affect classification on subsequent trials. For example, if the 

first stimulus involves the extremes of a dimension, such as an obviously very large or a very 

small square, this may draw the participant’s attention to that dimension (i.e., size) 

notwithstanding the absence of any comparison stimuli. In consequence, people may be more 

likely to rely on a dimension whose values on the first (few) trial(s) were extreme. We therefore 

considered the quinternary value of the first stimulus as a potential predictor of strategy.8

Table 2 shows the proportion of times that each quinternary dimension value (1=smallest or 

brightest; 5=largest or darkest) appeared on the first trial. The distribution deviated little from 

chance (.2) and also did not differ much between the two principal strategies, χ2(4, N = 137) = 

5.71, p > .10. Strategy is thus unrelated to the quinternary value of the first stimulus. 

Alternatively, people may be sensitive to the dimensional contrast between successive 

stimuli (i.e., a large stimulus followed by a small one). A number of theories acknowledge the 

importance of the discrepancy between a current stimulus and its predecessor. For example, 

Stewart, Brown, and Chater (2002) presented a Memory And Contrast (MAC) model, which 

states that if a stimulus is highly similar to the one preceding it, it is more likely to be placed in 

the same category. Conversely, if a stimulus is very different to the preceding one, a reversal in 

assignment is likely. The MAC model has successfully accounted for sequence effects in 

supervised category learning.
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Unsupervised Categorization 21

Accordingly, for each pair of stimuli during the first 5 trials, we counted the number of 

dimensions that changed (either 1 or 2; 0 being impossible because no stimulus was repeated 

during those trials) and independently determined the city-block distance between stimuli. When 

aggregated across the first 5 trials, neither measure differed between binary and quinternary 

categorizers: In terms of dimensional changes, the means for binary and quinternary categorizers, 

respectively, were 5.77 and 5.86, t(136) = –.51. In terms of city-block distance, the means for 

binary and quinternary categorizers were 9.08 and 9.06 respectively, t(136) = .05, p > .10. (The 

same outcome was obtained in separate analyses that considered only the first 2, 3, or 4 trials.) 

We conclude that inter-stimulus contrast also does not predict people’s strategy. 

Finally, we entered all potential predictors (first-trial distribution, number of pairwise 

dimension changes, and pairwise city-block distance) into a logistic regression model with 

strategy (binary vs. quinternary) as the discrete response variable. None of the variables were 

found to be significant, largest χ2(3, N = 137) = 1.44, p > .10, confirming that categorization 

strategies are unlikely to be determined by the properties of the stimulus sequence. 

This result is surprising in light of the clear evidence that people had at least partially 

acquired their chosen strategy after as few as 3-5 trials, at which poin t they had seen no more than 

half of all to-be-classified stimuli. Thus, the data present us with a paradox: On the one hand, 

people rapidly settle on their preferred strategy, but on the other hand, the attributes of those 

stimuli seemingly have no bearing on strategy choice. How can this paradox be resolved? One 

possibility is that we simply overlooked the crucial predictive stimulus attribute. This possibility 

cannot be ruled out, although we are not aware of other attributes which prior theorizing would

identify as relevant. We therefore favor another possibility, which is that people instantly divide 

their attention between the various stimulus dimensions and that this initial distribution of 

attention, rather than properties of the stimuli, guides subsequent classifications.
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Unsupervised Categorization 22

Allocation of Initial Attention

On this attention view, upon inspecting the first stimulus, people are likely to recognize the 

crucial dimensions, such as size and brightness. (People can identify relevant dimensions, as 

measured by a feature listing task, before categorization commences; Clapper & Bower, 1994). 

We suggest that people differentially distribute their attention between those dimensions, 

sometimes favoring size and sometimes brightness. Although final attention weights can be 

empirically confirmed (e.g., Kruschke & Blair, 2000), its initial distribution is difficult to measure

independently. Instead, hypotheses about initial attention weights can be explored by modeling. 

The modeling-of-attention approach has accounted for people’s categorization strategies in 

supervised categorization (e.g., Yang & Lewandowsky, 2004), and here we applied a similar 

technique based on Pothos and Chater’s (2002) simplicity principle.

We augmented Pothos and Chater’s (2002) simplicity principle with a selective attention 

mechanism. We varied the amount of attention paid to the binary dimension from .1 (almost 

none) to .9 (almost exclusive) in steps of .1. Attention to the quinternary dimension concomitantly 

varied from .9 to .1. For each setting of attention, we computed the compression associated with 

the binary and quinternary classifications. Compression represents the number of bits required to 

describe the inequalities among all stimuli given the particular category structure as a proportion 

of the number of bits required to describe the same inequalities in the absence of any 

classification (for details, see Pothos & Chater, 2002). The greater the compression, the “simpler” 

is the category structure and the more it should be preferred. The results (not shown in detail 

here) were clear: As attention shifted towards the binary dimension, use of a binary classification 

strategy resulted in increasing simplicity, with a concomitant increase in cost for the quinternary 

strategy. Conversely, as attention shifted away from the binary dimension, the quinternary 

strategy yielded greater simplicity at the expense of the binary alternative. It follows that if people 

commence the task with their attention randomly biased towards one dimension or the other, the 
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Unsupervised Categorization 23

classification strategy associated with that dimension—be it binary or quinternary—would yield 

the simpler, and hence preferred, classification.

Unsupervised and Supervised Learning

Our comparison of supervised and unsupervised learning can be summed up in two ways:

First, the rapid unsupervised strategy acquisition observed in both studies stands in contrast to the 

rather slow supervised learning in Experiment 1. Not only were supervised participants slower to 

learn within the first few trials, but their performance continued to lag behind as far as 20 trials 

into the task. The slow supervised learning is quite counter-intuitive because, particularly for the 

binary categorizers, it is curious why people would not “click” and catch on to the fact that the 

single dichotomous dimension was relevant. In addition, the striking difference in learning rates 

between the two modes of categorization could be taken to imply some fundamental processing 

differences. The second perspective on our results, however, suggests otherwise. When only those 

supervised participants are considered whose first responses was correct, the unsupervised speed 

advantage was virtually eliminated. Not only were there no statistical differences between the two 

conditions, but the progress of learning with respect to both principal strategic alternatives was 

virtually identical for supervised and unsupervised learners (see Figure 3).

What, then, might explain this rather striking pattern of differences and similarities between 

the two modes of categorization? Schyns (1991) offered the intriguing suggestion that all of 

categorization is inherently unsupervised, and that what is commonly thought to be supervised 

categorization only extends to the learning of appropriate category names. Actual classification, 

by contrast, is achieved by a self-organizing unsupervised system. We adopt this notion to 

account for our results: Supervised learning is generally slower than unsupervised learning 

because of the added need to associate stimuli with category labels. When the first supervised 

trial successfully pairs a label with a stimulus, this initial association provides a reference point 

that is identical to what is always available in unsupervised classification. In consequence, 

supervised and unsupervised learning rates no longer differ much, if at all. We therefore conclude 
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Unsupervised Categorization 24

that supervised and unsupervised category learning share not only common properties but, quite 

likely, also some common underlying processes. 

This conclusion stands in striking contrast to the interpretations offered by some earlier 

researchers, who stated that “... category learning was strikingly different, depending on whether 

feedback was provided… [Unsupervised participants] were only able to learn unidimensional 

rules…even when such rules failed to separate the stimuli into obvious clusters” (Ashby et al., 

1999, p. 1197). Likewise, Ashby et al. concluded that: “When the optimal rule was diagonal, 

[participants] responded with unidimensional or conjunctive rules ... even under conditions in 

which optimal performance was quickly achieved when feedback was provided” (p. 1194). In our 

view, those earlier conclusions were based on a less appropriate conception of unsupervised 

categorization that examined performance with respect to a single strategy that the experimenter 

considered correct but kept hidden from participants. When people’s unsupervised performance is 

instead examined with respect to the strategy they clearly prefer a very different pattern emerges: 

people are able to acquire a multi-dimensional classification strategy (Experiment 1); people 

retain considerable flexibility and continue to adapt to changes in the stimulus environment

(Experiment 2); people’s unsupervised strategy acquisition does not appreciably differ from 

supervised learning under comparable conditions (Experiment 1); and finally, unsupervised 

strategy acquisition represents a clear instance of true learning, rather than merely prolonged 

guessing (Experiments 1 and 2).
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Footnotes

1 Three participants provided three or more ambiguous stimulus assignments (i.e., equal 

number of A and B responses). These people were deemed unsure of their final categorization 

strategy and were thus removed from further analyses.

2 The remaining 9 (19%) participants used a variety of other idiosyncratic strategies, with a 

maximum of two participants using the same strategy, and were thus not considered further. No 

supervised training of those idiosyncratic strategies was performed.

3 Although the focus of this analysis is on the unsupervised participants, we have included 

the supervised data as a comparison, using all participants rather than the first-response-correct 

group only. The predicted values of both groups are equivalent for binary categorizers, but for the 

quinternary categorizers, the supervised and unsupervised predicted values differ slightly. This is 

due to there being a single training strategy for the supervised quinternary participants, whereas 

for the unsupervised participants a mixture of strategies must be taken into account. The observed 

differences in predicted values were so slight that for clarity of exposition only a single 

(aggregate) line is shown in the figure.

4 We thank an anonymous reviewer for alerting us to the possibility that unsupervised 

participants were simply guessing rather than learning anything about the category structure.

5 These individuals were excluded from the gap condition due to three or more ambiguous 

stimulus assignments.

6 Two individuals in Phase 1 chose to employ a multi-dimensional strategy; however, as in 

Experiment 1, they were considered together with the quinternary categorizers.

7 A subsequent ANOVA including the last few trials of Phase 2 in addition to the earlier trial 

periods was also carried out; however, this did not change the significance of any effects and is 

therefore not reported.
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8 This analysis was not performed for the binary dimension because both binary dimensional 

values occurred equally often on the first trial, which irrespective of their final classification 

strategy most participants invariably assigned to category “A.” Hence the binary analysis would 

carry no informational value.
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Table 1

Numbers (Percentages) of Participants in Each Condition of Experiment 2 Who Utilized Each 

Categorization Strategy

Condition

Extra Column Gap Balanced Balanced Gap Overall

Phase 1

Size-based (binary) 16 (73)      16 (67)      19 (73) 18 (75)      69 (72)

     Brightness-based

         1 | 2 3 4 5 or 1 2 3 4 | 5      2 (9)      1 (4) -      1 (4)      4 (4)

1 2  | 3 4 5 or 1 2 3 | 4 5      4 (18)      7 (29)      7 (27)      5 (21)      23 (24)

          Total   6 (27) 8 (33)      7 (27)      6 (25)      27 (28)

Phase 2

     Size-based

          1  |  others a      7 (32)      8 (33.5)      9 (35)      3 (12.5)  27 (28)

          1 2  |  others      5 (22.5)      7 (29)      7 (27)      12 (50)  31 (32)

others | 5 n/a n/a      2 (8)      1 (4)   3 (3)

          Total      12(54.5)      15(62.5)      18 (69)      16(66.5)  61 (63.5)

     Brightness-based

         1 | 2 3 4 5 or 1 2 3 4 | 5      1 (4.5)      2 (8.5) - -   3 (3) 

1 2  | 3 4 5 or 1 2 3 | 4 5      9 (41)      7 (29)      8 (31)      8 (33.5)  32 (33)

          Total      10(45.5) 9 (37.5) 8 (31) 8 (33.5)  35 (36.5)

a The term “others” refers to all dimensional values on one side of the boundary, whether contiguous or 

discontinuous.
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Table 2

Proportion of Times Each Quinternary Dimension Value Appears on the First Trial for 

Binary and Quinternary Categorizers in Experiment 1 and Phase 1 of Experiment 2

Quinternary Dimension Value

1 2 3 4 5

Experiment 1

     Binary (N = 17) .35 .12 .18 .18 .18

     Quinternary (N = 22) .32 .23 .04 .27 .14

Experiment 2: Phase 1

     Binary (N = 69) .26 .16 .22 .17 .19

     Quinternary (N = 27) .30 .15 .22 .22 .11
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Figure Captions

Figure 1. Multidimensional scaling (MDS) solution for the complete stimulus matrix used in 

both experiments based on the similarity ratings by a separate group of subjects who 

never categorized the stimuli. The dashed and dotted boxes represent, respectively,

the size-binary and brightness-binary stimuli for Experiment 1.

Figure 2. Proportion of responses during trials 1-3, 3-5, 8-10 and 18-20 that matched people’s 

ultimate classification strategy for binary categorizers (top panel) and quinternary 

categorizers (bottom panel) in Experiment 1. Solid lines with squares represent 

unsupervised participants and dashed lines with triangles represent all supervised 

participants.

Figure 3. Proportion of responses matching participant’s chosen strategy plotted against the 

proportion matching the alternative strategy for binary (top panel) and quinternary 

(bottom panel) categorizers in Experiment 1. Solid lines with circles represent 

unsupervised categorizers, and dotted lines with unfilled circles represent maximally 

comparable supervised categorizers whose first response was correct. Performance at 

the outset (trials 1-3) is represented by the larger plotting symbols and subsequent 

learning is represented by the smaller plotting symbols connected by arrows (with the 

final symbol representing trials 18-20).

Figure 4. Proportion of times category assignment switched between consecutive trials in 

response to a difference in quinternary value for binary categorizers (top panel) and 

quinternary categorizers (bottom panel) in trials 1-5, 8-12 and 16-20. Dotted lines 

represent the predicted switch proportions based on perfect adherence to final 

strategy. 

Page 34 of 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Unsupervised Categorization 34

Figure 5. Proportion of responses during trials 1-3, 3-5, 8-10 and 18-20 of Phase 1 in 

Experiment 2 that matched people’s ultimate classification strategy for Phase 1 (top 

panel), and the proportion of responses during the same trials of Phase 2 that matched 

participant’s initial  Phase 1 (middle panel) and Phase 2 (bottom panel) strategies.

Figure 6. Proportion of “A” responses to the first presentation of each “transfer” stimulus in 

Phase 2 of Experiment 2, aggregated over all conditions. The top panel shows 

transfer responses for people who were classified as binary categorizers in Phase 1, 

the bottom panel for quinternary categorizers.
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Figure 1
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Figure 2
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Figure 3
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Figure 4

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Unsupervised
Supervised
Predicted

B 1-5

Pr
op

or
tio

n 
Sw

itc
h

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Unsupervised
Supervised
Predicted

B 8-12

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Unsupervised
Supervised
Predicted

B 16-20

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Unsupervised
Supervised
Predicted

Q 1-5

Absolute Pairwise Difference

Pr
op

or
tio

n 
Sw

itc
h

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Unsupervised
Supervised
Predicted

Q 8-12

Absolute Pairwise Difference

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Unsupervised
Supervised
Predicted

Q 16-20

Absolute Pairwise Difference

Page 39 of 41

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Unsupervised Categorization 39

Figure 5
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Figure 6
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