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ity. Localist representations increase the number of neurons re-
quired for information processing but decrease the average activ-
ity of individual neurons. Distributed representations do the op-
posite. Since baseline synaptic activity represents up to 75% of
resting glucose utilization of the brain (Phelps et al. 1979), it is
likely that significant reductions in metabolic cost can be obtained
by minimizing the number of neurons. Hence efficient distributed
representations will minimize metabolic costs.

Page raises two additional objections to this notion of effi-
ciency: comprehensibility and learnability. Presumably both will
be addressed in other commentaries so we will limit our response
to two brief comments. First, although localist representations
are often transparent and therefore can be interpreted by an out-
side observer much more readily than distributed representa-
tions, the important point to remember here is that this is not the
purpose of neural representations. Instead, their purpose is to of-
fer the maximal adaptive advantage to an organism. Second, Page
claims that learning distributed representations is both ineffi-
cient and implausible. However, if McClelland et al. (1995) the-
ory of complementary learning systems is correct, then the meta-
bolic costs of maintaining a hippocampus must be outweighed by
the massive reduction in neocortex which it allows. Furthermore,
although backpropagation may be biologically implausible, more
realistic algorithms do exist (e.g., Hinton et al. 1995). Thus learn-
ing distributed representations need not be an insurmountable
problem.

In conclusion, we contend that both efficiency and reliability
lead one to adopt distributed, not localist, representations. Dis-
tributed codes minimize metabolic costs and therefore provide an
adaptive advantage to an organism. Let us be clear. We are not
suggesting that the brain uses an efficient coding scheme because
it is theoretically optimal. Instead, our claim is that evolution has
developed schemes to help minimize the metabolic cost of neural
computation. This is achieved through the use of sophisticated en-
coding schemes resulting in the use of distributed representations.
Page (sect. 8) claims “that if the brain doesn’t use localist repre-
sentations then evolution has missed an excellent trick.” We would
like to suggest, however, that if efficiency and reliability are im-
portant factors in neural information processing, then distributed,
not localist, representations are evolution’s best bet.
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Abstract: We focus on two components of Page’s argument in favour of
localist representations in connectionist networks: First, we take issue with
the claim that localist representations can give rise to generalisation and
show that whenever generalisation occurs, distributed representations are
involved. Second, we counter the alleged shortcomings of distributed rep-
resentations and show that their properties are preferable to those of lo-
calist approaches.

Page eloquently extolls the virtues of localist representations and
their presumed superiority over distributed representations in
connectionist networks. We focus on two aspects of the argument:
First, we contend that generalisation cannot occur without in-
volvement of distributed representations. Second, we refute six
objections levelled against distributed representations.

Localist representations do not generalise. Page identifies a
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representation as localist if it is “possible to interpret the state of
a given node independent of the states of other nodes” (sect. 2.2.,
para. 7). For example, the representations {0, 1} and {1, 0} for
items A and B would be considered localist, whereas {0, 1} and
{1, 1} would be considered distributed. Critically, Page advocates
a hybrid approach that “supplements the use of distributed rep-
resentations . . . with the additional use of localist representations”
(sect. 1, para. 3). In support, he presents a generic “localist” net-
work that exhibits a number of desirable properties, among them
the ability to generalise a learned response to noisy input. Critics
have often questioned whether localist representations are capa-
ble of generalisation, so its occurrence in a localist network de-
serves scrutiny.

We contend that the network’s ability to generalise arises en-
tirely from the use of distributed representations at the input layer
which “reflect, in a graded fashion, the degree of similarity that
the current input shares with each of those learned patterns” (sect.
4.3.1, para. 2). Localist representations, as defined by Page, are
necessarily orthogonal to each other. Hence, the graded similarity
that Page identifies as critical for generalisation is inextricably
linked to the presence of distributed representations at the input
layer.

Although this supports our claim that generalisation requires
distributed representations, other research shows that they need
not be confined to the input layer. Hinton (1986) presented a mul-
tilayer network in which representations at the input layer were
strictly localised whereas the hidden layer used distributed repre-
sentations. The network was found to exhibit meaningful general-
ization. Subsequent analysis of the activation profiles of the hidden
layer confirmed the crucial role of distributed representations.

Distributed representations resist objections. Page attributes
six deficiencies to distributed representations (sects. 7.1-7.6), all
of which revolve around the overlap of representations at the hid-
den layer. We counter these objections as follows.

7.1. Catastrophic interference. We concur with Page that inter-
leaved learning, in particular as instantiated by McClelland et al.
(1995), is not a preferred solution to catastrophic interference. We
also agree that elimination of catastrophic interference requires
minimisation of the overlap between representations at the hid-
den layer. However, it does not follow that localist representations
are therefore preferable. First, as alluded to by Page, distributed
solutions other than interleaved learning exist that reduce cata-
strophic interference (for a review, see Lewandowsky 1994). Sec-
ond, localist solutions to the interference problem, as for example
provided by ALCOVE (Kruschke 1992), have been shown to en-
gender impaired generalisation (Lewandowsky 1994). By con-
trast, all available distributed solutions to interference are known
to retain their ability to generalise (Lewandowsky 1994).

A careful consideration of catastrophic interference and gener-
alisation therefore points to an advantage of distributed over lo-
calist representations.

7.2. Implausibility of the learning rule. This criticism rests en-
tirely on the biologically dubious nature of the gradient-descent
algorithm in back-propagation. However, other distributed learn-
ing rules, such as Hebbian learning, have been directly supported
by biological research (e.g., Kelso et al. 1986). Moreover, at a psy-
chological level, direct empirical support for distributed repre-
sentations has been provided by the plethora of studies that have
confirmed the predictions of the Rescorla-Wagner theory of learn-
ing (e.g., Shanks 1991). An essential element of the Rescorla-
Wagner theory is that stimuli (e.g., in a categorisation task) are
represented by ensembles of attributes or features.

7.3. The dispersion problem. Can distributed representations
capture the similarity between sentences such as “John loves
Mary” and “Mary loves John? (sect. 7.3, para. 1). In agreement
with Page, we find this question difficult to answer for all possible
distributed schemes. However, we note that distributed linguistic
parsers have been implemented that address this problem (e.g.,
Miikkulainen 1996). It follows that distributed schemes are not at
a selective disadvantage in handling the dispersion issue.



7.4. Problems deciding “when” and “what.” In many distributed
networks, a response is identified by some extraneous process
“done by the modeller rather than by the model” (sect. 7.4, para.
2). Page correctly identifies this as a serious problem. However,
the solution to the problem need not be localist. Distributed net-
works that can unambiguously identify a response, without any ex-
traneous mechanism or any of the other objections raised by Page,
have been presented by Lewandowsky (1999), Lewandowsky and
Farrell (in press), and Lewandowsky and Li (1994).

7.5. Problems of manipulation. Contrary to the claim in the tar-
get article, response suppression can demonstrably be accom-
plished in a distributed network using (Hebbian) “anti-learning”
(e.g., Lewandowsky, in press; Lewandowsky & Li 1994). Page is
correct in assuming that other items might be affected to the ex-
tent that they are similar to the suppressed target, but there is no
evidence that this does not occur empirically. Indeed, this sup-
pression of “neighbours” might explain why similar list items suf-
fer more during serial recall than dissimilar ones.

7.6. Problems of interpretation. We agree that distributed mod-
els are more difficult to interpret than those with localist repre-
sentations. This is because distributed models, unlike localist
schemes, are capable of restructuring the input in interesting and
novel ways that may at first glance escape interpretation.

Consider the distributed network presented by Hinton (1986).
The network learned a set of input-output patterns whose seman-
tic structure was not captured by the localist input and output rep-
resentations. Through supervised learning alone, the network was
found to organise its hidden layer into a distributed representa-
tion that captured the underlying semantic structure. While it re-
quired some analysis to visualise that distributed representation,
the very fact that it was not immediately obvious implies that the
network learned something novel and interesting.

Conclusion. We concur with Smolensky (1990) that represen-
tation is “crucial . . ., for a poor representation will often doom the
model to failure, and an excessively generous representation may
essentially solve the problem in advance” (p. 161). Unlike Page,
we do not believe that localist representations are inherently
preferable to distributed approaches. The alleged flaws of distrib-
uted schemes cited by Page are in fact desirable properties.
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Abstract: Two categorization arguments pose particular problems for lo-
calist connectionist models. The internal representations of localist net-
works do not reflect the variability within categories in the environment,
whereas networks with distributed internal representations do reflect this
essential feature of categories. We provide a real biological example of per-
ceptual categorization in the monkey that seems to require population
coding (i.e., distributed internal representations).

Despite Page’s bold frontal assault on distributed connectionism,
we wish to point out what appear to us to be two significant prob-
lems with this type of localist network.

The problem of category variability. Consider two categories,
“fork” and “chair.” The variability within the first category is very
low: there just aren’t that many different kinds of forks. Chairs, on
the other hand, come in all different shapes, sizes and materials:
they range from beanbag chairs to barstools, from overstuffed
armchairs to rattan chairs, from plastic lawn chairs to that paragon
of ergonomic design, the backless computer chair that you kneel
on; some have four feet, some three, some none; some have backs,
some don’t; some are made of metal, others plastic, others wood,
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others, cloth and Styrofoam pellets, and so on. In other words, the
variability within the category of chair is enormous.

But in the localist model proposed by Page, and in localist mod-
els in general, this information about category variability is lost.
In distributed models, it takes more hidden nodes to encode a cat-
egory with high-variability than one with low variability. In other
words, the internal representations reflect external category vari-
ability. However, the category nodes in localist networks are un-
able to reflect this differential variability-in-the-environment of
various categories. The one-node internal “representation” corre-
sponding to the extremely low-variability category “fork” is pre-
cisely the same as the one-node internal representation corre-
sponding to the highly variable category “chair.”

Why is this a problem? Most significantly, because of the well-
documented fact of category-specific losses: in general, naming of
inanimate objects is found to be better preserved than naming of
animate objects (Farah et al. 1996; Funnell & Sheridan 1992; War-
rington & Shallice 1984). A model with distributed internal rep-
resentations can handle this problem quite simply: low-variance
categories (e.g., many natural kinds categories, like cat, horse, etc.)
are encoded over fewer “units” than high-variance categories (e.g.,
many artificial kinds categories, like chair, tool, etc.) Random le-
sioning of the model will be more likely, on average, to destroy the
representation of a category with low-variability (e.g., natural
kinds categories) that is coded over a small number of units than
a high-variability category (e.g., artificial kinds categories) coded
over a large number of units. Localist models in which all the cat-
egory nodes are the same will have considerable problems ex-
plaining category-specific deficits of this kind, especially when the
featural inputs to the internal category representations remains in-
tact. If, on the other hand, we assume differing degrees of vari-
ance associated with the internal encoding of different categories,
these kinds of deficits can be predicted in a straightforward man-
ner, as French (1997b) and French and Mareschal (1998) have
shown using a dual-network architecture based on the hippocam-
pal-neocortical separation proposed by McClelland et al. (1995).

As Page points out in his target article, we have argued for the
necessity of “semi-distributed” representations in connectionist
models for many years. But “semi-distributed” does not mean lo-
calist. “Semi-distributed” representations preserve category vari-
ance information; localist representations do not. Further, it
seems crucial to us that these semi-distributed representations
emerge as a result of learning.

Biological category representations. Page is right in pointing
out that some of what is called population or ensemble coding in
biological systems can be viewed as localist. For example, even
though broadly tuned, cells of the motor cortex have their maxi-
mum activity tuned to a particular direction (Georgopoulos et al.
1993). One should therefore be able to ascertain the direction be-
ing represented by looking at the activity of individual neurons (or
very small groups of neurons). However, an example of a cogni-
tively relevant task that cannot be achieved in this fashion can be
found in the anterior temporal cortex. Vogels (1999) reports on the
responses of cells in this area during a tree, non-tree categoriza-
tion task by a monkey. Most of the cells were stimulus selective,
(i.e., they did not respond to all of the presented stimuli) and re-
sponded to both trees and non-trees. The maximum response of
these neurons was not tuned to either category. Even though it
was the case that certain (category-selective) neurons responded
to particular subsets of tree exemplars, no individual neuron (or
small set of neurons) responded to all of the presented trees, while
not responding to any non-tree. These category-selective neurons
alone did not appear to play an important role in the categoriza-
tion performance of the monkey (Thomas et al. 1999). In other
words, population coding was necessary for the monkey to cor-
rectly categorize all exemplars in the test set.
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