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The question of how much the outcomes of cultural evolution are shaped by the cognitive capacities
of human learners has been explored in several disciplines, including psychology, anthropology and
linguistics. We address this question through a detailed investigation of transmission chains, in which
each person passes information to another along a chain. We review mathematical and empirical
evidence that shows that under general conditions, and across experimental paradigms, the
information passed along transmission chains will be affected by the inductive biases of the people
involved—the constraints on learning and memory, which influence conclusions from limited data.
The mathematical analysis considers the case where each person is a rational Bayesian agent. The
empirical work consists of behavioural experiments in which human participants are shown to
operate in the manner predicted by the Bayesian framework. Specifically, in situations in which each
person’s response is used to determine the data seen by the next person, people converge on concepts
consistent with their inductive biases irrespective of the information seen by the first member of the
chain. We then relate the Bayesian analysis of transmission chains to models of biological evolution,
clarifying how chains of individuals correspond to population-level models and how selective forces
can be incorporated into our models. Taken together, these results indicate how laboratory studies of
transmission chains can provide information about the dynamics of cultural evolution and illustrate
that inductive biases can have a significant impact on these dynamics.
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1. INTRODUCTION
Much of human knowledge is acquired not by
interacting directly with the physical world, but by
interacting with other people. The concepts we use, the
social conventions we obey and the languages we speak
are often learned by observing examples, behaviour
or speech produced by other people. These processes
of knowledge transmission constitute a basic element of
cultural evolution and have been the object of extensive
research in psychology (e.g. Bartlett 1932; Mesoudi
2007), anthropology (e.g. Cavalli-Sforza & Feldman
1981; Boyd & Richerson 1985; Sperber 1996) and
linguistics (e.g. Kirby 2001; Briscoe 2002; Nowak et al.
2002). A key question in all cases is how the minds of
human learners shape the outcomes of cultural
evolution: how inductive biases—the constraints on
learning and memory, which influence our conclusions
from limited data—relate to the concepts, conventions
and languages which appear in human societies."

In this paper, we explore one part of this question by
analysing the effects of inductive biases on one simple
form of knowledge transmission: the case where
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information is passed from one person to another
(figure 1). In this case, each person observes data
generated by the previous person, forms a hypothesis
about the process that produced those data and then
uses that hypothesis to generate data for the next
person. For example, a language learner might infer the
grammar of a language by hearing the utterances of
another person, and then use that grammar to generate
utterances that are heard by someone else. The
languages spoken by the people in this chain will
gradually change over time as a consequence of this
process. Transmission chains of this kind represent each
generation of learners with just one person, and thus do
not allow us to explore the influences of individuals
within a generation on one another; nonetheless, they
provide a powerful tool for exploring how knowledge
changes when transmitted across generations.

Our analysis of transmission chains (also known as
diffusion chains) uses a mixture of mathematical
modelling and laboratory experiments with human
participants. Mathematical models are widely used in
the study of cultural evolution, often drawing on the rich
body of mathematical models of biological evolution
(Cavalli-Sforza & Feldman 1981; Boyd & Richerson
1985; Nowak ez al. 2002). Laboratory experiments are
used more rarely, although there exist both classic and
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Figure 1. Transmission chains provide a simple setting for
studying cultural transmission that has been used in
psychology, anthropology and linguistics. In a transmission
chain, each agent observes the data generated by the previous
agent, forms a hypothesis about the source of these data and
then uses that hypothesis to generate data for the next agent.

more recent studies of this kind (see Mesoudi 2007;
Caldwell & Millen 2008; Mesoudi & Whiten 2008).
Combining mathematical modelling with laboratory
experiments gives us the opportunity to test the
predictions of our models. Because the mechanisms of
cultural evolution are fundamentally psychological,
involving processes such as learning, memory and
decision-making, using the methods of cognitive psy-
chology allows us to determine whether we have
accurately characterized these mechanisms.

We seek to describe how human inductive biases
change the information being transmitted. Both
learning and remembering involve inductive problems,
requiring people to form hypotheses that go beyond the
limited data that are available to them (e.g. Anderson
1990). Learning language is a classic example of an
inductive problem, with the grammar of the language
being underdetermined by the utterances a learner
observes. Similar problems arise in other settings, such
as determining whether a social convention such as
tipping applies based on a few examples or reconstruct-
ing a briefly glimpsed experimental stimulus. Inductive
biases are the factors that lead a learner to choose one
hypothesis over another when both are equally
consistent with the observed data. In language
learning, such biases might favour languages of certain
forms over others, whereas in the case of tipping they
might reflect beliefs about social structures. While
previous work has explored how relatively simple
‘direct biases’ that influence whether an agent adopts
a hypothesis affect knowledge transmission (Boyd &
Richerson 1985), we aim to obtain general results
characterizing the consequences of arbitrarily complex
inductive biases.

Exploring the effects of inductive biases on knowledge
transmission requires having a means of expressing these
biases. We do this by analysing transmission chains
formed of agents who use Bayesian inference, a
mathematical theory that provides a rational solution
to inductive problems. Bayesian models make inductive
biases explicit and have accounted for human
learning (Anderson 1991; Tenenbaum & Griffiths
2001; Griffiths & Tenenbaum 2005) and memory
(Anderson & Milson 1989; Shiffrin & Steyvers 1997;
Griffiths ez al. 2007) with considerable success. Examin-
ing how knowledge transmission by Bayesian agents is
affected by the inductive biases of those agents gives us a
very general framework, whose assumptions overlap
with accounts of rational behaviour in economics and
statistics. This framework makes predictions about the
outcomes of cultural evolution, which we can test in the
laboratory with human participants.
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Our central thesis is that the inductive biases of
individuals have a significant effect on the information
conveyed along a transmission chain, and that this
suggests that inductive biases may play a significant role
in cultural evolution more broadly. In support of this
thesis, we present a basic mathematical result—that
information passed along a transmission chain formed
of the Bayesian agents ultimately comes to reflect the
inductive biases of those agents (Griffiths & Kalish
2005, 2007; Kirby ez al. 2007)—and summarize a series
of experiments with human participants, which bear
out this prediction (Kalish ez al. 2007; Griffiths er al.
2008). We also show that this analysis can be
generalized to populations as well as chains of
individuals, producing parallels with formal models of
biological evolution, and that in such a context the
inductive biases of individual learners can have a
greater effect on the outcome of cultural evolution
than selective forces.

We proceed as follows: §2 reviews the significance of
questions about inductive biases and cultural evolution
in anthropology, psychology and linguistics; §3 discusses
how these different disciplines have converged on the
use of transmission chains and summarizes our math-
ematical analyses; §4 presents empirical results bearing
out the predictions of this account; §5 outlines how our
approach relates to the models of biological evolution
and the relative importance of inductive biases and
selective forces in cultural evolution; and §6 presents
our conclusions.

2. RELATING INDUCTIVE BIASES AND
CULTURAL EVOLUTION
Inductive problems feature prominently in cognition.
Questions about how people learn categories,
functional relationships or languages ultimately reduce
to questions about human inductive biases. Typically,
research with adult participants explores the form of
these biases, such as what kinds of categories are easy to
learn (Shepard er al. 1961), whereas researchers in
cognitive development seek to understand the origins
of those biases (e.g. Spelke er al. 1992; Gopnik &
Meltzoff 1997). Recently, evolutionary psychologists
have suggested that we can obtain answers to these
questions by looking at ‘human universals’ (Brown
1991)—the beliefs and practices which seem to be
common to all human societies (e.g. Pinker 2002).
Anthropologists have explicitly explored the
relationship between inductive biases and cultural
evolution. Sperber (1985, 1996), Boyer (1994, 1998)
and Atran (2001, 2002) have argued that processes of
cultural transmission provide the opportunity for
inductive biases, such as ontological commitments
about the kinds of entities that exist, to manifest
themselves in culture. This argument is based on the
significant role that learning and memory play in
cultural transmission. Sperber (1996, p. 84) states
that ‘the ease with which a particular representation
can be memorized’ will affect its transmission, and
Boyer (1994, 1998) and Atran (2001) emphasize the
effects of inductive biases on memory. This idea has
some empirical support. For example, Nichols (2004)
showed that social conventions based on disgust were
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more likely to survive several decades of cultural
transmission than those without this emotional com-
ponent. This advantage is consonant with the large
body of research showing that emotional events are
often remembered better than comparable events that
are lacking an emotional component (for a review, see
Buchanan 2007).

The role of memory and learning in cultural
transmission has also led to arguments against applying
mathematical models of biological evolution to cultural
evolution (e.g. Cavalli-Sforza & Feldman 1981; Boyd &
Richerson 1985), on the grounds that imperfect
inferential transmission is very different from the more
reliable copying of genes, which underlies biological
evolution (Boyer 1998; Atran 2001; Sperber & Claidiére
2006). In particular, cognitive factors that transform
knowledge in a way that is analogous to the mutation of
genes may play a more significant role in cultural
evolution than external selective forces that favour one
piece of knowledge over another. Henrich & Boyd
(2002) presented several simple models intended to
defuse these arguments. For example, one model
showed that in the presence of strong ‘cognitive
attractors’ that make agents more likely to adopt
particular pieces of knowledge, weak selective forces
that increased the value of different knowledge were
sufficient to favour one attractor over another as the
outcome of cultural evolution. We return to the question
of how inductive biases and selection interact in §5.

Research on language evolution also explores the
relationship between inductive biases and cultural
transmission, examining how constraints on language
learning influence the languages that a population of
learners comes to speak. Human languages form a
subset of all logically possible communication schemes,
with some properties being shared by all languages
(Greenberg 1963; Comrie 1981; Hawkins 1988).
Traditionally, these ‘linguistic universals’ are explained
by appealing to the constraints of an innate system
specific to the acquisition of language (e.g. Chomsky
1965). A popular alternative explanation is that the
universal properties of human languages have arisen as
a consequence of languages being learned anew by each
generation, with each learner having only weak,
domain-general inductive biases (e.g. Kirby 2001).
This alternative explanation relies upon the possibility
that cultural transmission can emphasize the inductive
biases of language learners, allowing such weak biases
to be translated into strong and systematic universals of
the kind seen in human languages.

The effects of cultural transmission on languages
have also been the subject of extensive observational
and experimental analysis. Creolization, the formation
of a more regular system of communication from a
piecemeal pidgin, has traditionally been one of the
strongest arguments for constraints on language
acquisition influencing the structure of languages
(Bickerton 1981), and typically occurs when a language
is passed from one generation to the next. Experiments
investigating how adults and children learn artificial
but realistic languages have provided support for the
idea that language learning by children plays an
important role in this process, showing that children
tend to regularize probabilistic elements of languages
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(making them more deterministic) to a greater extent
than adults (Hudson-Kam & Newport 2005). Recent
work has also explored how languages are formed and
change across generations through the observation of
the development and transmission of sign languages
(Senghas er al. 2004), complementing an extensive
theoretical and empirical literature on language
creation and change (DeGraff 1999).

The preceding examples illustrate that all the three
disciplines discussed—psychology, anthropology and
linguistics—could be informed by a deeper under-
standing of how inductive biases affect knowledge
transmission.

3. USING TRANSMISSION CHAINS TO MODEL
CULTURAL EVOLUTION

In addition to sharing common questions about the
influence of inductive biases on cultural transmission,
psychologists, anthropologists and linguists have all used
a common paradigm to explore these questions,
examining what happens when information is trans-
mitted along a single chain of individuals, as illustrated
in figure 1. Such transmission chains provide a way to
study one of the basic elements of cultural evolution—
how information changes when passed from one person
to another—in isolation, making it possible to study it in
detail. While this analysis ignores many of the other
factors that are important to the creation and change of
concepts and languages, such as interactions between
individuals within a generation (Steels 2003; Galantucci
2005; Garrod et al. 2007), understanding how each of
these factors operates in isolation will ultimately help
understand their combination.

The use of transmission chains in psychology was
pioneered by Bartlett’s (1932) °‘serial reproduction’
experiments, in which participants were shown a
stimulus and then asked to reproduce it from memory,
with their recalled version being presented to the next
participant and so on. Bartlett argued that reproductions
seem to become more consistent with the cultural biases
of the participants as the number of successive
reproductions increases. However, these arguments
were largely anecdotal and lacked quantitative rigor.
Nonetheless, serial reproduction has become one of the
primary methods that psychologists have used to explore
the effects of cultural transmission, and similar experi-
ments are used by anthropologists and biologists to
examine what kinds of cultural concepts persist over
time and whether non-human animals can transmit
information across generations (for a review, see
Mesoudi 2007; Mesoudi & Whiten 2008; Whiten &
Mesoudi 2008).

In linguistics, the study of transmission chains has
largely been restricted to simularions of the process of
language change. In these ‘iterated learning’
simulations, a sequence of agents each learns a
language by observing the utterances of the previous
agent, and then in turn produces utterances that are
observed by the next agent (Kirby 2001; see Smith &
Kirby 2008). Simulations have shown that languages
with interesting structure emerge from iterated learning
with a variety of learning algorithms (Kirby 2001;
Brighton 2002; Smith ez al. 2003). In particular, basic
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properties of human languages such as composition-
ality—the use of different parts of an utterance to
describe different aspects of an event—can be produced
by very simple learning algorithms, without requiring
innate language-specific constraints on learning (e.g.
Smith er al. 2003).

The prevalence of transmission chains in research on
cultural evolution is due in part to their simplicity as a
model of knowledge transmission. This simplicity also
makes transmission chains amenable to mathematical
analysis. In the remainder of this section, we sum-
marize the behaviour of transmission chains consisting
of a sequence of the Bayesian agents (Griffiths & Kalish
2005, 2007; Kirby ez al. 2007).

(a) Chains of Bayesian agents

Following the schema shown in figure 1, we have a
sequence of agents, each of whom observes data d and
forms a hypothesis / about the knowledge of the previous
agent responsible for generating those data. What form
the data and hypotheses take will depend on the kind of
knowledge being transmitted: for concepts, data could
be instances of that concept and hypotheses rules that
characterize it; for social conventions, data could be
observations of the behaviour of others and hypotheses
the circumstances under which a convention applies; and
for languages, data could be a set of utterances and
hypotheses grammars. We assume that each learner
selects a hypothesis by sampling from a distribution
P; o(h|d), where LA refers to some learning algorithm,
and generates data by sampling from a distribution
Ppa(hld), where PA refers to some production algorithm.
Using #,, and d,, to represent the hypothesis formed and
the data generated by the nth learner, respectively, this
defines a stochastic process on (4, d,,) pairs.

A first observation is that this process is a Markov
chain: a sequence of random variables in which each
variable depends only on that which precedes it. In our
case, the hypothesis—data pair (4, d,,) is independent of
all preceding pairs given (4,1, d,—;). Marginalizing
out (i.e. summing over) either hypotheses or data
makes it possible to define Markov chains on just d,, or
h,, respectively. It is often particularly convenient to
study the Markov chain on hypotheses. If the number
of hypotheses is finite, the probability of the nth learner
adopting hypothesis 7 given that the n— 1th learner held
hypothesis j is given by the transition matrix Q,
with entries

g; = P(h, = ilh,—y =)

=" Pra(h, = ild)Ppa(dlh,—, =) (3.1)
d

which will depend on the learning and production
algorithms adopted by the learners.

Reducing the process of cultural transmission to a
Markov chain makes it easy to ask questions about the
outcome of such a process. Provided the Markov chain
satisfies a set of easily checked conditions, it will
converge asymptotically to a stationary distribution
(Norris 1997). In the case of the Markov chain on
hypotheses identified above, this means that the
probability that the nth learner entertains a particular
hypothesis will converge to a fixed value as » becomes
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large, regardless of the hypothesis entertained by the
first learner. Determining the consequences of using a
particular learning algorithm is thus a matter of
determining how that learning algorithm influences
the stationary distribution. This distribution can be
found numerically by computing the first eigenvector of
the transition matrix (such as the matrix Q defined in
equation (3.1), but in some cases it is also possible to
give an analytic characterization.

Transmission chains formed of the Bayesian agents
provide one case in which an analytic stationary
distribution can be obtained. If we use a probability
distribution over hypotheses P(%) to encode an agent’s
degrees of belief in each hypothesis before seeing the
data (known as the prior distribution), the corresponding
distribution P(%|d) after seeing the data d (known as the
posterior distribution) is obtained by applying Bayes’ rule

P(d|n)P(h)
Yo wewn P@IW)PH')’

where P(d|/) (known as the likelihood) is the probability
of seeing the particular data d if the particular hypothesis
h is true, and the sum in the denominator ranges over
the set of all possible hypotheses, . The Bayesian
inference provides a useful framework for exploring
questions about inductive biases, since the prior P(%)
effectively encodes the inductive biases of the agent,
being a source of additional information or constraints
that discriminate between hypotheses with equal like-
lihoods. Thus, hypotheses with lower prior probability
are harder to learn or remember, requiring stronger
evidence to achieve high posterior probability.

The assumption that the agents use Bayesian
inference reduces the psychological complexities of
learning to a single equation. At first glance, this might
appear to ignore a long tradition of work on under-
standing human learning by cognitive psychologists;
however, rather than ignoring that knowledge, our
approach merely characterizes human learning at a
higher level of abstraction, often referred to as the
‘computational level’ (Marr 1982). That is, we are
exclusively concerned with the ouzcome of learning but
have no commitment to a specific process by which it
occurs. Many available models of learning and skill
acquisition may provide helpful process instantiations
of the Bayesian agents in our computational level of
description, and formal equivalences exist between
some of these process models and Bayesian inference
(e.g. Ashby & Alfonso-Reese 1995).

The learning algorithms we will consider are based
on the posterior distribution produced by applying
Bayes’ rule. ‘Learning’ in the present context refers
to the choice of a hypothesis about the data, so perhaps
the simplest algorithm is to sample a hypothesis from
the posterior. Using this algorithm, the distribution
Py o(h|d) becomes

Ppa(d|h)P(h)
>owen Poa(@n)P(H')’
where we place no constraints on the production
algorithm PA, but assume that the learning algorithm

employed by the agents draws on accurate knowledge
of this distribution.?

P(h|d) =

3.2)

Psamp(hld) =

(3.3)
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With these specific assumptions about the form of
the learning algorithm in hand, we are able to analyse
the stationary distribution of the resulting Markov
chain. Griffiths & Kalish (2005) showed that the
stationary distribution of the Markov chain on
hypotheses is the prior distribution, P(4). A more
extensive analysis performed by Griffiths & Kalish
(2007) also provided stationary distributions for
Markov chains on data and hypothesis—data pairs,
and pointed out a correspondence between the
latter and a Markov chain Monte Carlo algorithm
called Gibbs sampling (Geman & Geman 1984),
commonly used in Bayesian statistics. In a nutshell,
these mathematical results imply that irrespective of
the stimuli presented at the outset, the final result of
iterated learning across generations is the expression
of the learners’ inductive biases.

Convergence to the prior provides a simple answer
to the question of how the inductive biases of
individuals affect the outcome of cultural evolution. It
indicates that the probability that a particular
hypothesis—a language, religious concept or social
norm—will emerge as the result of being transmitted
from one person to another is simply the prior probabi-
lity of that hypothesis. This means that inductive
biases—the constraints on learning that characterize
the minds of individuals—will lie in a direct one-to-one
correspondence with the outcomes of knowledge
transmission. Returning to the various claims about
cultural evolution made above, this analysis is consist-
ent with Bartlett’s conclusions about serial reproduc-
tion revealing cultural biases, with the arguments of
Boyer (1994, 1998), Sperber (1996) and Atran (2001)
concerning the role of human cognition in shaping the
information being transmitted, and with the analysis of
linguistic universals as the direct outcome of con-
straints on language acquisition.’

Making what might seem like a small change to the
assumptions about the learning algorithm used by our
Bayesian agents has significant consequences. An
alternative to sampling from the posterior distribution
is to choose the hypothesis that has the highest
posterior probability (known as maxumum a posterior:
or MAP estimation). In this case, the probability of
selecting a particular hypothesis becomes

1, 4 maximizes P(k|d),

Pyap(hld) { (34

0, otherwise,

where P(k|d) is computed as in equation (3.3), and the
constant of proportionality is determined by the
number of maxima of P(k|d). Griffiths & Kalish
(2007) showed that in this case a small difference in
the prior P(k) can result in a big difference in the
stationary probability of a hypothesis. Kirby ez al.
(2007) showed that moving from sampling to MAP
estimation increases the magnitude of the effect of the
prior on the outcome of knowledge transmission, with
hypotheses that are slightly favoured by the prior being
over-represented in the stationary distribution. These
results paint a slightly different picture of the relation-
ship between inductive biases and cultural universals,
showing that weak inductive biases can be magnified by
the process of cultural transmission to produce strong
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universals. This is still consistent with the claims of
psychologists and anthropologists about the import-
ance of cognitive factors in cultural evolution.
However, it undermines the inference from cultural
universals to equivalently strong constraints on
learning, which is part of the traditional interpretation
of linguistic universals: if weak biases can be magnified
by cultural evolution, then we no longer need to
postulate strong constraints to account for the consist-
ency observed in human languages.

(b) 4 simple example: two hypotheses

We illustrate the dynamics of the Bayesian transmission
chains with a simple example. In this example, we
assume that agents choose between two hypotheses by
sampling from their posterior distributions. A similar
example covering both sampling and MAP estimation
is analysed in detail by Griffiths & Kalish (2007).

The case of two hypotheses naturally maps onto a
variety of simple pieces of knowledge that might be
transmitted across generations, such as whether the verb
in a sentence precedes the object, a certain class of foods
is considered sacred or to tip taxi drivers. Inductive
biases from a variety of sources, from innate constraints
on language learning to the social perception of tipping,
could influence the transmission of this knowledge.
Using numbers to denote hypotheses, we can summarize
the prior distribution over these hypotheses by using 7 to
designate P(k=1). Each agent in a chain has the
opportunity to observe a piece of data generated by the
previous agent, such as a set of utterances, a labelling of
sacred objects or some tipping behaviour. To simplify, we
will assume that this piece of data can also take on two
values and that these values are indicative of the
hypothesis entertained by the agent. This can be done
by taking P(d = k|lh=k)=1—c¢ for k € {1, 2}, where ¢
is a parameter indicating the amount of noise in
transmission.

These assumptions provide us with all the infor-
mation we need to compute the transition matrix of the
Markov chain on hypotheses. The prior and likelihood
specified by m and € can be substituted into equation
(3.2) to give the posterior distributions,

(1—em

Ph=1ld=1) = l—er+el—m’

€T

P =1ld=2) = ar+(1—o(l—m)’

where the probabilities for 2#=2 are obtained from the
fact that the posterior sums to 1. Substitution into
equation (3.1) can be used to compute the transition
matrix, summing over the values d € {1,2}. Since
probabilities sum to 1, we need to specify only two of
the entries of Q, such as ¢, and ¢,;, to give the full
transition matrix. An elementary calculation yields

qi2 = CT go1 = ¢(1—m), (3.5)

where c=¢e(1 —€)(1/(1 —e—m+ 2em) + 1/(e + m— 2¢m)).
This indicates that the probability of moving from
hypothesis 2 to 1 is proportional to the prior probability
m, but the constant of proportionality is strongly
influenced by the noise rate ¢, increasing as € increases.
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Figure 2. Dynamics of the probability of an agent adopting
hypothesis 1 as a function of the number of generations of
transmission. As the number of generations increases, the
probability of choosing /; converges to the prior probability,
7w=0.2. The noise parameter ¢ determines the rate of
convergence, with €¢=0.01 (solid lines) converging more
slowly than €=0.05 (dotted lines).

The transition matrix can be used to characterize the
dynamics and asymptotic consequences of cultural
transmission. The probability that an agent chooses a
particular hypothesis after # iterations is given by Q"p,
where p is a vector specifying the distribution over
hypotheses used to generate the first piece of data.
Figure 2 shows how this quantity evolves over time for
7=0.2 and €€ {0.01,0.05}. Regardless of whether the
first piece of data was generated from hypothesis 1 or 2,
just 10 iterations are sufficient to bring the probability
that an agent selects a hypothesis close to the prior
probability 7. Increasing the value of ¢ (and hence the
noise in the transmission) increases the rate of
convergence, making it easier for an agent to entertain
a hypothesis different from that of the previous agent.

The first eigenvector of Q is a vector € such that
QO =0. It makes intuitive sense that this should be the
stationary distribution of the Markov chain, since this
defines a distribution that does not change through
further application of the stochastic process defined by
Q (i.e. by definition of eigenvectors, Q"0=6 for all ).
Since 6, =1— 6, we can reduce this definition to an
equation in a single variable,

(1= g21)0; + q12(1 — 6,) =0,

which has the solution 6; = ¢,/(q1, + ¢»;). Substituting
the values for ¢, and ¢,; from equation (3.5) into this
solution, we obtain #; =. This indicates that the
stationary probability of hypothesis 1 is 7, being equal
to its prior probability and consistent with the
convergence shown in figure 2.

(3.6)

(¢) Summary

Transmission chains provide a simple way to study one
of the basic forces in cultural evolution—the way that
knowledge changes when transmitted from person to
person. This simplicity is paralleled in the mathemat-
ical analysis of such systems that reduce to Markov
chains. When the chain is composed of Bayesian
agents, we can make precise predictions about the
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effects of inductive biases (expressed in the priors of
those agents) on knowledge transmission: the prob-
ability that an agent considers a hypothesis will
converge to the prior probability of that hypothesis.
We next examine whether these predictions are borne
out in the laboratory.

4. SIMULATING CULTURAL EVOLUTION IN

THE LABORATORY

Empirical tests of the idea that transmission chains
converge to the agents’ prior distributions face two
obstacles. First, we must know what the priors are, so
that we can recognize how closely they are approxi-
mated by the stationary distribution. Second, we must
be able to determine when (and if) a chain has
converged. The first constraint led us to consider two
simple tasks for which previous research provided
strong evidence as to the general structure of the prior.
The second constraint led us to a design that employed
multiple chains starting from different initial states.
Convergence has occurred when all chains produce
similar results despite their diverse initial conditions.

(a) Learning categories

The simplest example of this method, and perhaps the
best instance of a known prior in an appropriate domain,
is a study in which people learned to extend a partially
specified category to a set of novel items (Griffiths ez al.
2008, Experiment 1B). The items all varied on three
binary dimensions and the categories divided the eight
items into two classes of four. If we do not distinguish
structures that differ only in the assignment of physical
features to the binary dimensions, there are only six
types of such categories (figure 3a). To illustrate, if the
three binary dimensions defined geometric objects by
shape (e.g. circle or square), size (e.g. small or large) and
colour (e.g. black or white), then a type I category might
differentiate all squares (regardless of size or colour)
from the circles, whereas a type II category might pick
out white squares and differentiate them from black
circles (regardless of size).

Psychological research has told us a good deal about
how people learn these categories. In particular,
Shepard ez al. (1961) showed that the six types of
categories have a canonical ordering of difficulty, with
types I and II being significantly easier to learn than the
others. The robustness of this finding (e.g. Nosofsky
et al. 1994) suggests that it is an effective index of the
prior over the six category types: the more difficult a
category is, the more data it requires to learn and hence
the lower its prior probability.

We used these category types to explore whether
people’s inductive biases—reflected in the difficulty-
of-learning results—would influence the outcome of
cultural transmission. Our stimuli were ‘amoebae’
whose nuclei varied along the three dimensions of
shape, size and colour mentioned above (after Feldman
2000). People were asked to make inferences about
‘species’ of amoebae based on examples. On each trial
of the experiment, a participant was shown three
amoebae that were stated to belong to a species, and
asked to identify the fourth amoeba belonging to that
species. To do so, all possible four-item categories that
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Figure 3. Transmission chains for categories. (a) If we consider categories that are sets of four objects defined on three binary
dimensions and ignore the assignment of the dimensions to the physical properties of those objects, there are just six possible
category types (i-vi), types I-VI (Shepard ez al. 1961). Each of the six types is illustrated on a cube, where each dimension of the
cube corresponds to one of the binary dimensions and the vertices are the eight objects. Filled circles represent members of an
example category of that type. Type I categories are defined on one dimension; type II uses two dimensions; types III, IVand Vare
one dimension plus an exception and type VI uses all three dimensions. (b) Transmission chains were constructed by showing
people three objects drawn from a category and asking them to indicate, from a set of possible alternatives, which object completed
the set. The objects seen by the next person were selected at random from the set selected by the previous person. The probability
with which people selected categories of the six types changes as a function of the number of generations of a transmission chain, as
predicted by a Bayesian model using a prior estimated from human learning data. In particular, the probabilities of types I and VI
increase and decrease, respectively. (i) Human participants and (ii) Bayesian model (circles, type I; crosses, type II; triangles, type
IIT; squares, type IV; five-point stars, type V; six-point stars, type VI). Further details are provided in Griffiths ez al. (2008).

contained the three original amoebae and one other
amoeba were presented to the participant who selected
the category deemed most likely. Formally, the three
original amoebae are the data d and the response
alternatives are the hypotheses 4. Participants were
implicitly being asked to compute p(x|d) and use it to
select one of the alternatives.

Each of the participants in the experiment
completed a series of trials, of which a subset were
linked to the responses of other people via transmission
chains. Specifically, the participants were randomly
grouped into seven ‘families’ of 10 generations each,
with responses transmitted between members of each
family. For the first participant in each family, the
amoebae seen on each trial were sampled uniformly at
random from the set of four matching a category
structure of one of the six types, with the six types
appearing with equal probability. The amoebae seen by
the next participant were then sampled from the set of
four selected by the first participant and so forth.

Under the mathematical analysis presented above,
the frequency of each category type in each generation
should come to approximate the prior as the number of
generations increases. This is precisely what was
observed empirically: the frequency of type I concepts
increased and type VI decreased over the course of
the experiment, and types I and I dominated responses
by the end of the experiment (figure 3b6). The use of a
finite hypothesis space made it possible to compute
a full transition matrix for this Markov chain, and
the numerical predictions of the resulting Bayesian
model were strongly consistent with the observed
data (figure 35).

(b) Learning functions

In contrast to the limited set of hypotheses available
to learners with the concepts described above,
most inductive problems allow for a vast number of

Phil. Trans. R. Soc. B (2008)

hypotheses. One such task is function learning, where a
metric stimulus value (such as the dosage of a drug or
driving speed) is related to a metric criterion (such as the
response to the drug or stopping distance). Such
relationships can have arbitrary complexity, but people
nonetheless appear to have strong priors over the space of
possible relationships. Kalish ez al. (2004), in reviewing
the literature on function learning, observed that people
generally assume (and are the quickest to learn)
increasing linear functions where the criterion increases
in direct proportion to the stimulus. This is consistent
with an inductive bias that favours such functions.

Exploiting knowledge about human inductive biases
for this task, Kalish er al. (2007) conducted an
experiment in which people formed a transmission
chain for function concepts. In this experiment, each
generation of participants received 50 trials of training
on a single function. On each trial, the value of the
stimulus was presented as a visual magnitude, being the
width of a horizontal bar on a computer screen.
Participants responded by adjusting the height of a
vertical bar and then received corrective feedback (by
displaying the correct magnitude next to the response
bar). After training, participants responded to 100
stimuli that covered the entire possible range of
magnitudes without receiving feedback.

As in the experiment described above, the data seen
by the participants were influenced by the responses of
other participants. Participants were arranged into
eight families of nine generations, for each of four
conditions. The conditions differed with respect to the
function used to generate the training data seen by the
first generation of participants: those initial values were
drawn either from a positive linear, negative linear or
quadratic function, or entirely at random. For example,
a participant trained on the negative linear function
would see a series of training pairings where large
stimulus values (i.e. long bars) were paired with small
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Figure 4. Representative results for transmission chains with human participants in which people learn functions. (a—d) Each
row shows a single chain. (i) The (x, y) pairs were presented to the first participant in the chain, being represented as the width
and height of horizontal and vertical rectangles, respectively. Participants then made predictions of the value of y for new x values
({) n=1, (i) n=2, (iv) n=3, (v) n=4, (vi) n=>5, (vii) n=06, (viii)) n=7, (ix) =38, (x) n=9). These predictions formed the
(x, y) pairs given to the next person in the chain, whose data appear in (ii)—(x) and so forth. Consistent with the previous research
exploring human inductive biases for function learning, chains produced linear functions with mostly positive slopes, regardless
of whether they were initialized with (a) a positive linear function, (b) a negative linear function, (¢) a nonlinear function or (d) a

random collection of points.

criterion values (i.e. short bars) and vice versa. The
responses of each participant on 50 of the test trials
were taken as the data used to train the participant in
the next generation of that family.

Representative families from the four conditions are
shown in figure 4. Two features of the data from these
chains are immediately apparent. First, striking
changes in the stimulus—criterion functions across
generations were observed, but only sporadically.
This indicates that people’s acquired functions were
generally very easy for the next generation to learn.
Second, notwithstanding the dramatic differences
between functions at the outset, across generations all
of the initial functions gradually disappeared and
transited into only one of two stable functions: positive
linear (28 out of 32 families) and negative linear (4 out
of 32), both with approximately unit slope. These
results are consistent with the previous work suggesting
that people’s priors are centred on positive and negative
linear functions and they support the predictions of our
formal analysis.

(¢) Summary

Laboratory experiments involving transmission chains
for concepts that have been extensively studied by
psychologists provide a direct test of the predictions of
our formal framework. By using categories and
functions—concepts for which human inductive biases
are well understood—we were able to investigate
whether these biases influence the outcome of knowl-
edge transmission. The results support the conclusion
that knowledge transmission converges to an equili-
brium determined by the inductive biases of learners,
with categories and functions that people find easier to
learn becoming more prevalent across generations.
Flynn (2008) reports an analogous result with small
children, who very quickly discard irrelevant infor-
mation when transmitting a sequence of problem-
solving moves to an observer in the next generation.
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Our laboratory results have implication for views of
human cultural evolution. In particular, the data are
consonant with the view that cultural representations
tend to be ‘recurrent’—that is, many aspects of culture
transcend beyond isolated times and places (e.g. Boyer
1998). Our repeated demonstrations that inductive
biases determine the final outcome of knowledge
transmission provide an empirical foundation for
claims by anthropologists and psychologists that
human cognitive capacities will influence the ideas
that appear in human societies, such as Boyer’s (1998)
claim that religious concepts are influenced by people’s
‘intuitive ontologies’—i.e. the distinctions they draw
between classes of objects from a very early age.

5. RELATING CULTURAL AND BIOLOGICAL
EVOLUTION

We next consider some connections between the
theoretical and empirical analyses presented thus far
and mathematical models of biological evolution.
These connections generalize our results beyond the
simple case of transmission chains. Mathematical
models of biological evolution are often applied to
cultural evolution (Cavalli-Sforza & Feldman 1981;
Boyd & Richerson 1985), and it is common to see both
informal (Deacon 1997; Kirby 1999) and formal
(Nowak et al. 2002) analogies between languages and
genotypes as objects of evolution. We first discuss how
our results relate to standard analyses of evolutionary
dynamics, by showing that the evolution of population
proportions in the absence of selection is intimately
related to the behaviour of transmission chains. We
then discuss what this connection tells us about the role
of selection in cultural evolution.

(a) Transmission chains and the replicator
dynamics

The basic model of deterministic evolution is based on
the replicator dynamics (e.g. Hofbauer & Sigmund
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1998). Let x; denote the proportion of a population of
agents entertaining hypothesis 7 at a given moment ¢,
and g; denote the probability that a learner chooses
hypothesis : after seeing the data generated from
hypothesis j, as defined in equation (3.1). If we assume
that each learner learns from a random member of the
population, then the population proportions evolve as

dx,-
J

(5.1)

where f; is the firness of people who subscribe to
hypothesis j; ¢ = ,fpx; is the mean fitness; and the
second term on the right-hand side ensures that
> ix;=1. In biological evolution, fitness reflects the
number of offspring produced by an individual of a
particular type. In cultural evolution, it is more natural
to interpret fitness as influencing the probability with
which an individual chooses an agent from the previous
generation as a source of data. If agents are selected with
probability determined by f;, the same dynamics hold.*

Equation (5.1) has been extensively applied to
cultural evolution for the case of languages, in the
form of the ‘language dynamical equation’ explored by
Nowak ez al. (2001, 2002). In this work, fitness is
typically assumed to be a function of how well speakers
of a particular language can communicate with the
population at large, implementing a selection pressure
for communication. If we instead assume that all
speakers have equal fitness, f;=1, equation (5.1)
simplifies to

dx;
dzl = Zqz'jxj - X
J

which is a linear dynamical system. This is a ‘neutral’
model, in which there are no selective forces favouring
one language or hypothesis over another. A special
case of this model was analysed by Komarova &
Nowak (2003).

The neutral model characterizes the evolution of a
population in the absence of selection, and thus
provides a valuable null hypothesis against which to
evaluate claims about selective forces, as well as a way
to study the effects of mutation. It also gives us a way to
connect the replicator dynamics to transmission chains.
The asymptotic behaviour of this linear dynamical
system is straightforward to analyse: it converges
towards an equilibrium at the first eigenvector of the
transition matrix Q (for details, see Griffiths & Kalish
2007). This means that the neutral form of the
replicator dynamics displays asymptotic behaviour
that is very similar to that of transmission chains
involving discrete generations of single learners. The
key difference is in the nature of the quantities that
converge: with discrete generations of single learners, it
is the probability with which a particular learner
entertains hypothesis ¢ that converges to the stationary
probability; under the replicator dynamics, it is the
proportion of the population that entertains hypothesis 7
that converges to this probability.

The results from the previous sections characterize
the consequences of cultural evolution not only for
individuals but also for populations. This provides an

(5.2)
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additional justification for the use of transmission
chains in studying cultural evolution: the parallel
between the stationary distributions of such chains
and the equilibria of the replicator dynamics in
populations provides a way to gather clues about the
behaviour of populations using a paradigm that is easily
simulated in the laboratory.

(b) Inductive biases can overwhelm selective
pressures

In addition to indicating how transmission chains can
inform the study of cultural evolution more broadly,
this connection provides us with a way to generalize our
mathematical results to cases where selective forces also
influence the adoption of hypotheses. This can allow us
to evaluate whether inductive biases can play a more
significant role in cultural evolution than selection, as
suggested by Sperber (1996), Boyer (1998) and Atran
(2001), or whether selection is the more powerful force,
as argued by Henrich & Boyd (2002). While obtaining
general analytical results is difficult, we can at least gain
an idea of how these forces interact by returning to our
example with just two hypotheses.

With the two hypotheses, the fact that x;+x,=1
means that we can work with just one variable. We will
use x, the proportion of agents choosing hypothesis 1,
and denote this x for simplicity. In §3b, we defined the
matrix Q as a function of the prior probability of
hypothesis 1, 7, and the noise rate, €. In the neutral
model from §5a, where the fitness of both hypotheses is
equal (i.e. each generation chooses an agent to learn
from at random from the previous generation with
uniform probabilities), the equilibrium of the system is
given by finding a value of x such that equation (5.2) is
equal to zero. It is straightforward to show that this
is equivalent to solving equation (3.6), and thus the
equilibrium is given by x=m=. The critical question is
how this equilibrium is affected by selection, as
represented by unequal fitness for the two hypotheses.

We will assume that the fitness of hypothesis 1 is
f1=s and hypothesis 2 has constant fitness f,=1. We
are interested in the case where s> 1. This higher fitness
might reflect higher social status accorded to those
who adopt the hypothesis, greater success in solving
problems posed by the environment as a consequence
of having this belief or some other indicator of success
that might make others more likely to try to learn from
these “fit’ individuals. The equilibrium of the resulting
system is given by finding x such that equation (5.1) is
equal to zero. Simplification for the case of the two
hypotheses reduces this to the quadratic equation

dx
—=1=-9x"+((1— )5 — q12 — Dx + q12,

% (5.3)

which can be solved by standard methods to find an
equilibrium for a particular choice of s, ¢, and ¢»;.
Figure 5a shows how the equilibrium changes as a
function of s for 7=0.2 and e€ 0.01, 0.05. As might be
expected, increasing s increases the representation of
hypothesis 1 in the equilibrium solution.

We can use equation (5.3) to explore the relative
contributions of the prior probability of a hypothesis 7
and the strength of selection s on the equilibrium of this
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Figure 5. The interaction of selection with inductive biases. (a) Increasing the selective pressure in favour of hypothesis 1
increases the representation of that hypothesis in the population. The equilibrium probability of hypothesis 1 for 7=0.2,
€€ {0.01,0.05} (solid line, dotted line, respectively), and a range of values of the selective pressure s are shown. (b) Threshold on
s for hypothesis 1 to obtain an equilibrium probability greater than 0.5 as a function of 7 and €. For values of 7w and € such that
g>1> 0.5, no value of s produces an equilibrium favouring hypothesis 1.

system. When s= 1, we know that the equilibrium value
of x will be m. If 7 is less than 0.5, the equilibrium will
be biased against /;. We might thus ask how large s will
have to be in order to overcome this bias, making the
equilibrium value of x greater than 0.5. The functions
shown in figure 5a indicate that this happens relatively
quickly for the values of 7 and € considered above, with
the equilibrium passing 0.5 for values of s not much
greater than 1. In appendix A, we show that the
threshold value of s is
= ﬂ’ (5.4)
1—2gy,
provided ¢;, < ¢»; < 0.5. The first part of this condition
follows automatically from the fact that # < (1 — ), but
the second part is more interesting. If g,; > 0.5, then
there is 7o value of s such that the equilibrium favours
hypothesis 1. Intuitively, if more than half the agents
learning from endorsers of hypothesis 1 adopt
hypothesis 2, there is no way that increasing the fitness
of hypothesis 1 can push the equilibrium past 0.5.
The requirement that ¢,; be less than 0.5 places
strong constraints on the values of 7 and ¢, which can
support equilibria favouring hypothesis 1. Figure 5b
shows how the threshold on s behaves as a function of 7
and e. The threshold rapidly increases as w and €
approach values that make ¢,; close to 0.5, and any
value of 7 less than 0.5 has some value of € for which no
amount of selection will yield an equilibrium favouring
hypothesis 1. For example, 7#=0.2 results in reasonable
thresholds on s for small values of € of the kind used in
the examples above, but taking ¢e=0.16 allows the prior
to have a sufficiently strong influence on the inferences
of the agents that no amount of selection can overcome
it. These results thus illustrate how inductive biases can
lead a population to an equilibrium that reflects those
biases, even if there are other social or environmental
factors that strongly favour a different outcome.

6. CONCLUSION

At the start of this paper, we asked a very general
question concerning cultural evolution, namely how
people’s inductive biases (their knowledge and
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expectations) affect the transmission of languages and
concepts. We analysed this general question in the more
circumscribed context of transmission chains, in which
knowledge is passed from one person to the next.
Within this paradigm, the general question about
inductive biases becomes the question of how these
biases change the information being transmitted. We
provided two converging answers: one based on an
abstract mathematical analysis and the other based on
evidence from behavioural experiments. Both answers
suggest that in many circumstances, transmission
chains converge to an equilibrium that reflects people’s
inductive biases.

The mathematical results we summarized apply to
learning algorithms based on the Bayesian inference in
which observed data are combined with inductive
biases expressed as a prior distribution over hypotheses.
In this case, the probability with which a person at the
end of a transmission chain selects a particular
hypothesis converges to a distribution determined by
the prior. The data from several experiments were
found to be in accord with this prediction: after
transmission across a fairly small number of gener-
ations, people’s responses approximated their known
inductive biases in terms of the proportions with which
they chose competing hypotheses, for both categorical
concepts and continuous functions. In both cases,
people’s biases were established independently through
previous experiments, and, with categorical concepts,
direct measurement within the same experiment. The
fact that the products of our transmission chains were
consistent with these inductive biases suggests that the
way people behave in these tasks is sufficiently similar
to the Bayesian inference to permit the conclusion that
our mathematical results accurately characterize the
dynamics of cultural transmission.

These mathematical analyses and experimental
results imply two strong statements about cultural
evolution in general. First, they indicate that the power
of inductive biases can trump the potential stabilization
provided by faithful learning. Recall that in the
function learning experiment of Kalish ez al. (2007),
the first generation of learners was presented with
widely different functions, ranging from positive linear
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to quadratic and entirely random—nonetheless, after
only four or five generations, those different starting
points had been absorbed and responses converged to a
function that remained stable across further gener-
ations. Learning from the data produced by the
previous participant was thus insufficient to guarantee
faithful cultural transmission, with the influence of
inductive biases accumulating with each generation.
Second, the analyses reported in §5 suggest that prior
biases may even trump selection pressures in determin-
ing the dynamics of cultural evolution: a highly
counter-intuitive hypothesis will fail to dominate a
population, even if there are strong advantages to
adopting it. These results suggest that one of the
consequences of cultural transmission will be the
adaptation of concepts and languages to match
human inductive biases.
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M.L.K., respectively) and by a Discovery Project grant
from the Australian Research council to S.L.. We thank four
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ENDNOTES

I\We refer to these constraints as inductive biases by analogy to the
machine learning literature, in which the inductive bias of a learning
algorithm is the set of assumptions that lead the algorithm to select
one hypothesis over another (Mitchell 1997). By considering human
learning as one such algorithm, we use inductive biases to refer to all
factors, such as prior knowledge or expectations, that make ideas
easier to learn or remember, whether they are derived from innate
constraints or from experience.

2Note that PA refers to the agent from the previous generation in this
equation, as the data are the utterances produced by the previous
learner. We assume that PA and LA are the same across all learners,
which amount to the assumption that the prior distribution P(%) is
also shared.

%It is worth emphasizing that this analysis only justifies a connection
between the prior and the consequences of knowledge transmission: it
does not indicate where the inductive biases expressed in the prior
distribution of hypotheses come from, and thus does not in itself
provide justification for the claims about modular cognitive
architectures or innate domain-specific constraints on linguistic or
ontological knowledge, which are associated with these positions (for
further discussion of this point, see Griffiths & Kalish 2007).
“While much recent work applying these models (e.g. Nowak ez al.
2002) has focused on the effects of frequency-dependent selection, we
restrict ourselves here to the case where fitness does not depend on
the composition of the population. Exploring the consequences of
Bayesian learning in the context of frequency-dependent selection is
an exciting direction for future work.

APPENDIX A

To derive the threshold on s, we observe that dx/dz is a
negative quadratic function in x, and takes positive
value when x=0 (dx/dt=g¢;,) and negative values when
x=1 (dx/dt= —¢5,5). It follows that dx/dz=0 at exactly
one point in [0,1]. When s=1, this point is 7. If 7<0.5,
then we can ask what value of s is required such that the
crossing point is greater than 0.5. The derivative of
dx/dr with respect to s is —x? + (1 — g,;)x, which is
positive at 0.5 provided ¢,; <0.5. Solving for s such that
dx/dt=0 when x=0.5 thus gives us a threshold above
which the equilibrium value of x will be greater than
0.5. Substituting 0.5 for x into 9 and solving for s gives
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equation (5.4). When ¢,; > 0.5, the derivative of dx/dz
with respect to s at 0.5 is negative. Consequently,
increasing s can only decrease dx/dz at this point. We
know that dx/dz at 0.5 is negative when s=1, sono s> 1
can result in an equilibrium in which the probability of
hypothesis 1 is 0.5 or greater.
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