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Abstract: The null-hypothesis significance-test procedure (NHSTP) is defended in the context of the theory-corroboration experiment,
as well as the following contrasts: (a) substantive hypotheses versus statistical hypotheses, (b) theory corroboration versus statistical
hypothesis testing, (c) theoretical inference versus statistical decision, (d) experiments versus nonexperimental studies, and (e) theory
corroboration versus treatment assessment. The null hypothesis can be true because it is the hypothesis that errors are randomly
distributed in data. Moreover, the null hypothesis is never used as a categorical proposition. Statistical significance means only that chance
influences can be excluded as an explanation of data; it does not identify the nonchance factor responsible. The experimental conclusion is
drawn with the inductive principle underlying the experimental design. A chain of deductive arguments gives rise to the theoretical
conclusion via the experimental conclusion. The anomalous relationship between statistical significance and the effect size often used to
criticize NHSTP is more apparent than real. The absolute size of the effect is not an index of evidential support for the substantive
hypothesis. Nor is the effect size, by itself, informative as to the practical importance of the research result. Being a conditional probability,
statistical power cannot be the a priori probability of statistical significance. The validity of statistical power is debatable because statistical
significance is determined with a single sampling distribution of the test statistic based on H0, whereas it takes two distributions to
represent statistical power or effect size. Sample size should not be determined in the mechanical manner envisaged in power analysis. It is
inappropriate to criticize NHSTP for nonstatistical reasons. At the same time, neither effect size, nor confidence interval estimate, nor
posterior probability can be used to exclude chance as an explanation of data. Neither can any of them fulfill the nonstatistical functions
expected of them by critics.
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This précis of Statistical significance: Rationale, validity,
and utility (Chow 1996) begins with a description of the
main themes of its eight chapters.As criticisms of the null-
hypothesis significance-test procedure (NHSTP) are an-
swered in the context of the theory-corroboration experi-
ment, the rationale of theory corroboration and the logical
foundation of experimentation are described after a de-
scription of NHSTP itself. It is argued that NHSTP can
(and should) be defended when some conceptual or meta-
theoretical distinctions are made. “Theory”and “hypoth-
esis” will be used interchangeably in the subsequent discus-
sion even though the former has a more grandiose
connotation.

To begin with, because the statistical hypothesis is not
the substantive hypothesis (Meehl 1978), corroborating a
substantive hypothesis is more than testing a statistical
hypothesis. Similarly, drawing a theoretical conclusion is
more than deciding whether or not the result is statistically
significant (Tukey 1960). It further follows that research
data and conclusions are not (and should not be) accepted
or rejected merely on the basis of statistical significance.
Some criticisms of NHSTP seem persuasive when these
distinctions are not made. Other criticisms of NHSTP are
based on criteria imported from domains outside statistics.
A case will be made that the dissatisfaction with NHSTP

stems from attempts to use it to fulfill functions that belong
to the theory-corroboration or treatment-assessment pro-
cess. The alternative numerical indices (viz., effect size,
confidence interval estimate, and statistical power) pro-
posed by critics of NHSTP (henceforth referred to as
critics) cannot fulfill these nonstatistical functions.
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1. An overview of Statistical significance

Statistical significance begins in Chapter 1 by recounting
the commonly known criticisms of NHSTP. Also described
is the methodological paradox that psychologists may inad-
vertently find support for weaker theories when they im-
prove their research methods (Meehl 1967). The basic
structure and rationale of NHSTP is illustrated with a
completely randomized 1-factor, 2-level quasi-experiment
in Chapter 2. It is shown that the null hypothesis can be
true, particularly in experimental studies with manipulated
variables. Also defended is the hybrid nature of NHSTP.

To distinguish between a substantive and a statistical
hypothesis, the quartet of hypotheses associated with the
to-be-studied phenomenon in the theory-corroboration ex-
periment is introduced in Chapter 3. It is shown that the
null hypothesis appears twice in NHSTP, once as the
consequent and once as the antecedent of two conditional
propositions. That statistical hypothesis testing is not theory
corroboration is seen from the role statistical significance
plays in the chain of deductive reasoning discussed in
Chapter 4. The outcome of NHSTP is to supply the minor
premise for the innermost of the series of three embedding
conditional syllogisms.

Two meanings of “effect” are identified in Chapter 5. The
anomalous relationship between statistical significance and
effect size is more apparent than real because, in terms of
the technical meaning of “effect,” the effect size is not
indicative of the amount of evidential support for the
substantive hypothesis offered by data. Nor is the effect
size, by itself, informative about the practical importance
of the research result. Some conceptual difficulties with
power analysis are identified in Chapter 6. Being a condi-
tional probability, statistical power cannot be the a priori
probability of obtaining statistical significance. Some of the
issues raised by power analysts are concerns about the
stability of the data. It is argued that the stability issue is
neither a numerical nor a mechanical one.

The methodological assumptions underlying Bayesian
statistics are considered in Chapter 7. The applicability of
the Bayesian approach is questioned because the prototype
of empirical research congenial to the Bayesian argument is
not typical of psychological research, particularly the
theory-corroboration kind. Experimental data can be de-
fended in a relativistic milieu. The main arguments in
defense of NHSTP are summarized in Chapter 8 with
reference to a set of questions suggested by criticisms of
NHSTP.

2. Criticisms of NHSTP 

NHSTP has been criticized since the 1960s (Morrison &
Henkel 1970). The same litany of criticisms of NHSTP is
repeated periodically by various critics, as is noted re-
cently by Thompson (1996). Some of the commonly
known difficulties of relying on NHSTP are that (1) sta-
tistical significance may be the result of the fortuitous
choice of the sample size or the a level, (2) the null
hypothesis is never true, (3) nothing can be learned from
statistical significance about the inverse probability of the
hypothesis (i.e., the probability that the hypothesis is
true, given the data), (4) the binary nature of NHSTP is
antithetical to the fact that knowledge advances in an
incremental manner, (5) statistical significance is not in-

formative about the values of parameters, (6) the Type II
error is unjustifiably neglected, and (7) nothing about the
practical impact of the research result can be learned
from its statistical significance.

Critics find it puzzling that psychologists persist in using
NHSTP. This state of affairs indicates that NHSTP users
suffer from distorted statistical intuitions and conceptual
confusion (Gigerenzer 1993). However, the resiliency of
NHSTP is warranted. It can be shown that the criticisms of
NHSTP are debatable. The frame of reference used in the
present defence of NHSTP is suggested by Meehl (1990)
and Cohen (1994), but they restrict their criticisms of
NHSTP to nonexperimental studies. Meehl (1967) adds
that his criticisms are more applicable to experiments using
subject variables (e.g., sex, race, educational level, etc.)
than to those using manipulated variables (e.g., stimulus
duration, method of training, etc.). These caveats raise two
interesting questions:

Q1. Why should NHSTP be more problematic in the case
of subject-variable experiments than manipulated-variable ex-
periments?

Q2. What renders NHSTP more satisfactory in an experi-
ment than in a nonexperiment?

Questions Q1 and Q2 suggest that many criticisms of
NHSTP are not statistical in nature. The real issue is
whether or not the research result is brought about by
procedural artifacts or confounding variables. That is, criti-
cisms of NHSTP are actually concerns about inductive
conclusion validity (see Campbell & Stanley 1963; Chow
1992; Cook & Campbell 1979).

3. The quartet of hypotheses underlying
the theory-corroboration experiment

In view of Questions Q1 and Q2, it may be instructive to
reconsider the criticisms of NHSTP in the context of the
theory-corroboration experiment. Moreover, some hitherto
neglected distinctions may be seen more readily when such
a frame of reference is adopted. For such an end, consider
first the quartet of hypotheses implicated in the theory-
corroboration experiment with reference to Table 1. (Ig-
nore the entries in italics for the moment, i.e., Propositions
[P1.19] through [P1.59]. )

Consider the phenomenon of linguistic competence that
native speakers of English can understand and generate an
infinite number of grammatical utterances. A hypothesis
that has been used to explain this phenomenon is Miller’s
(1962) rendition of Chomsky’s (1957) transformational
grammar (see [P1.1] in Table 1). This psychological analog
of the transformational grammar is a substantive hypoth-
esis, and it is an explanatory theory.

Many theoretical implications follow from the hypothesis
that transformational grammar is psychologically real. One
such implication is that nonkernel sentences (e.g., negative
sentences) are more difficult to process than kernel sen-
tences. Specifically, whereas the kernel sentence is gener-
ated with the phrase-structure rules, a negative sentence
requires the additional step of applying a negative transfor-
mation to the kernel sentence. The relationship between
the substantive hypothesis and the implication in question
is represented by [P1.2] in Table 1. The consequent of the
conditional proposition, [P1.2], is the research hypothesis.
However, in such a form, the research hypothesis is not
sufficiently well defined for experimentation. For example,
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Table 1. The logical relations among the to-be-explained phenomenon, theory, research hypothesis, experimental
hypothesis, and statistical hypotheses (alternative and null) in a theory-corroboration experiment

Level of discourse What is said at the level concerned

To-be-explained The linguistic competence of native speakers of English.
Substantive hypothesis The linguistic competence of native speakers of English is an analog

of the transformational grammar.
[P1.1]

Complement of theory The linguistic competence of a native speaker of English is not an
analog of the transformational grammar.

[P1.19]

Research hypothesis If [P1.1], then it is more difficult to process negative sentences than
kernel sentences.

[P1.2]

Complement of research hypothesis If 2[P1.1], then there is no difference in difficulty in processing
negative and kernel sentences.

[P1.29]

Experimental hypothesis If the consequent of [P1.2], then it is more difficult to remember
extra words after a negative sentence than a kernel sentence.

[P1.3]

Complement of experimental hypothesis If not the consequent of [P1.2], then it is equally difficult to
remember extra words after a negative and a kernel sentence.

[P1.39]

“Statistical alternative hypothesis” If the consequent of [P1.3], then H1.1 [P1.4]
“Statistical null hypothesis” If not the consequent of [P1.3], then H0 .2 [P1.49]
Sampling distribution of H1 If H1, then the probability associated with a difference between ker-

nel and negative sentences as extreme as 1.729 standard error
(tdf519) units from an unknown mean difference is not known.

[P1.5]

Sampling distribution of H0 If H0, then the probability associated with a difference between
kernel and negative sentences as extreme as 1.729 standard error
(tdf519) units from a mean difference of zero is 0.05 in the long run.

[P1.59]

1. H1 5 mean of extra-sentence words recalled after negative sentences , mean of extra-sentence words recalled after kernel
sentences.

2. H0 5 mean of extra-sentence words recalled after negative sentences $ mean of extra-sentence words recalled after kernel
sentences.

it is necessary to specify the nature of the processing
involved. 

The problem of vagueness with [P1.2] is resolved by
stipulating (a) a well-defined experimental task in a specific
setting, and (b) a dependent variable whose identity is
independent of the substantive hypothesis. A simplified
version of Savin and Perchonock’s (1965) task may be used
to illustrate the solution. Suppose that subjects are pre-
sented with eight words after being shown either a kernel or
a negative sentence on any trial. Suppose further that the
repeated-measures design is used. That is, the same sub-
jects receive both types of sentences in the course of the
experiment.

The subjects must first recall the sentence verbatim and
then recall as many of the eight extra words as possible. In
the context of this experimental situation and of the auxil-
iary assumption that the short-term store has a limited
capacity (Miller 1956), an implication of the consequent of
[P1.2] is that it is more difficult to remember extra words
after a negative sentence than after a kernel sentence. This
implication of the research hypothesis is the experimental
hypothesis, which appears as the consequent of [P1.3] in
Table 1.

Because the experimental hypothesis is not amenable to
statistical analysis in its present form, it is necessary to
derive its implication at the statistical level. Specifically, the
implication is that the mean of extra-sentence words re-
called after negative sentences is smaller than that after
kernel sentences. This implication is more commonly
known as the statistical alternative hypothesis (H1), and it is
the consequent of [P1.4].

Consider the logical complement of H1, in Table 1. It is
stated that the mean of extra-sentence words recalled after
negative sentences is equal to or larger than that after
kernel sentences (see the consequent of [P1.49] in Table 1).
This logical complement of H1 is the statistical null hypoth-
esis (H0). Given that whatever is true under the “larger
than” component of H0 is subsumed under the “equal to”
component, the “larger than” component serves no further
purpose in the present discussion.

That this appeal to H0 is neither contrived nor arbitrary
may be seen from the entries in italics in Table 1. The steps
of derivation of [P1.39] from [P1.19] are the same as those
implicated in deriving [P1.3] from [P1.1]. Hence, [P1.39] is
not contrived if [P1.19] is not an arbitrary assertion. Being
the logical complement of [P1.1], [P1.19] is not a whimsical
statement. In other words, H0 is not as arbitrary as it has
been characterized to be (see, e.g., Fisher 1959; Rozeboom
1960; Thompson 1996).

The null hypothesis has two uses. First, it can specify the
sampling distribution of differences required for the test of
significance (see [P1.59] ). Second, a decision about H1 may
be made through making a decision about H0 because these
two statistical hypotheses are mutually exclusive and ex-
haustive (see the “H0, data, and chance influences” discus-
sion in sect. 12 for an explication).

In sum, underlying the theory-corroboration experiment
is a quartet of hypotheses, namely, the substantive, re-
search, experimental, and statistical alternative hypotheses.
It can be seen that neither H0 nor H1 is the substantive,
research or experimental hypothesis. Hence, it becomes
necessary to distinguish between testing a substantive hy-
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pothesis at the conceptual level with empirical data (i.e.,
theory corroboration) and testing a statistical hypothesis
(viz., statistical hypothesis testing). At the same time, it is
noted in [P1.5] in Table 1 that H1 cannot be used to specify
the to-be-used sampling distribution of differences that
underlies the t test because the magnitude of the difference
between the means of the kernel and negative sentences is
not specified in H1. The complement of H1 (i.e., H0) is used
instead (hence, [P1.59] in Table 1). This invites a closer
examination of NHSTP, particularly in view of the generally
accepted verdict that H0 is never true.

4. The Null-hypothesis Significance-test
Procedure (NHSTP)

A consideration of how theory corroboration differs from
statistical hypothesis testing may begin with a brief recount-
ing of the rationale and procedure of NHSTP. Suppose that
Savin and Perchonock’s (1965) task is used, and the statisti-
cal alternative hypothesis is that fewer words are recalled
after recalling negative sentences than kernel sentences.
H1 and H0 are commonly (but misleadingly) written as
follows under such circumstances:

(1) H1: unegative , ukernel
(2) H0: unegative $ ukernel

Suppose further that the repeated-measures design is used,
and there are 20 subjects. This experiment will be referred
to as the “kernel-negative experiment” in subsequent dis-
cussion. The usual a level is set at 0.05. Strictly speaking,
the test is whether or not the associated probability, p, of the
calculated t is smaller than 0.05. “Associated probability”
means “the probability of [the calculated t ] plus the proba-
bilities of all more extreme possible values” under H0
(Siegel 1956, p. 11). In actual practice, the t (dependent
sample in this example) is calculated and compared to the
critical value of t (i.e., 21.728, df 5 19, a 5 .05) for this
particular one-tailed test.

This critical value of 21.729 is given by the appropriate t
distribution, which is the standardization of the sampling
distribution of differences (Siegel 1956). The binary deci-
sion is to choose between “calculated t # 21.729” and
“calculated t . 21.729.” The outcome of this binary
decision determines the choice between the two modus
ponens arguments depicted in the two top panels in Table 2.
If the calculated t is 21.729 or smaller, the decision is that
the result is significant (i.e., the “not H0” conclusion in the
top left panel of Table 2). If the calculated t is larger than
the critical value, it is decided that the result is not signifi-
cant (i.e., the “H0 conclusion in the top right panel of Table 2).

It is assumed that H1and H0 are mutually exclusive and
exhaustive (see the “H0, data, and chance influences” discus-
sion in sect. 12). Hence, denying H0 leads to accepting H1 by
virtue of the disjunctive syllogism depicted in the lower panel
of Table 2. The experimental conclusion drawn from a statis-
tically significant result is that fewer words are recalled after
recalling negative sentences than kernel sentences.

Of interest is the fact that the experimental conclusion is
about the relationship between two variables (viz., sentence
type and number of extra words recalled ). However, theo-
retical conclusions go beyond a mere functional relation-
ship between the independent and dependent variables.
The theoretical interest concerns the nature of the lin-

Table 2. Two conditional syllogisms (upper panel) and the
disjunctive syllogism (lower panel) implicated in the null-

hypothesis significance testing procedure (NHSTP)

Upper Panel

Criterion exceeded Criterion not exceeded

Major premise If calculated t #
(criterion
5 21.729), then
not H0.

If calculated t . (cri-
terion
5 21.729), then H0.

Minor premise t # (criterion 5
21.729)
[e.g., calculated t
5 22.05]

t . (criterion 5
21.729)
[e.g., calculated t 5
21.56]

Conclusion Not H0 H0

Lower Panel

Statistical significance obtained

Major premise: H1 or H0
Minor premise: not H0
Conclusion: Therefore, H1.

guistic competence. This more sophisticated meaning of
research data at the theoretical level is not informed by the
NHSTP exercise depicted in Table 2. This consideration
has not featured in the debate about the validity or utility of
NHSTP because discussants have in mind a different type
of experiment (a point to be discussed in sect. 21: “Differ-
ences between the utilitarian and theory-corroboration
experiments”). To see how the theoretical meaning is ex-
tracted from experimental data, it is necessary to consider
what constitutes the theory-corroboration process.

5. The rationale of the theory-corroboration
experiment

To corroborate the substantive hypothesis experimentally is
to show that the experimental data are consistent with the
tenability of the substantive hypothesis. That is, there is
“warranted assertibility” (Manicas & Secord 1983). This
idea suggests that a crucial consideration in theory corrobo-
ration is the logical relationship between the substantive
hypothesis and the evidential data. Such a consideration
requires more than a statistical decision. Also implicated is
the judicious application of deductive and inductive logic in
different stages of the exercise.

6. The role of deductive logic in the theory-
corroboration experiment

Table 1 shows that H1 is three implicative steps from the
substantive hypothesis. At the same time, there is a chain of
deductive reasoning leading from experimental data to the
substantive hypothesis via H1, the experimental hypothesis
and the research hypothesis. This series of deductive rea-
soning may be seen more readily if the logical relations
among the quartet of hypotheses shown in Table 1 are
expressed in the form of a series of three embedding
conditional syllogisms, as in Table 3.
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Table 3. The series of three embedding syllogisms (in roman font, italic, and boldface, respectively) underlying
the theory-corroboration procedure when the null hypothesis is rejected

Major premise 3 If [P1.1]1 in Table 1, then [P3.1].2 [MAJ-3.3]7
Major premise 2 If [P3.1], then [P3.2].3 [MAJ-3.2]6

Major premise 1 If [P3.2], then H1.4 [MAJ-3.1]5

Minor premise 1 H1 is true. [MIN-3.1]
Conclusion 1 Therefore, [P3.2] is true in the interim (by virtue of experimental controls). [CON-3.1]
Minor premise 2 [P3.2] is true in the interim. [MIN-3.2]
Conclusion 2 Therefore, [P3.1] is true in the interim (by virtue of experimental controls). [CON-3.2]
Minor premise 3 [P3.1] is true in the interim. [MIN-3.3]
Conclusion 3 Therefore, [P1.1] in Table 1 is true in the interim (by virtue of experimental

controls).
[CON-3.3]

1. [P1.1] in Table 1 The linguistic competence of a native speaker of English is an analog of the transformational grammar.
2. [P3.1] It is more difficult to process negative sentences than kernel sentences (i.e., the consequent of [P1.2]

in Table 1).
3. [P3.2] It is more difficult to remember extra words after a negative sentence than a kernel sentence (i.e., the

consequent of [P1.3] in Table 1).
4. H1 mean of extra-sentence words recalled after negative sentences , mean of extra-sentence words re-

called after kernel sentences.
5. [MAJ-3.1] is [P1.4] in Table 1.
6. [MAJ-3.2] is [P1.3] in Table 1.
7. [MAJ-3.3] is [P1.2] in Table 1.

The syllogisms in Table 3 are called “conditional syllo-
gisms” because their major premises are conditional propo-
sitions (viz., [MAJ-3.1], [MAJ-3.2], and [MAJ-3.3] ). The
first (or the innermost) syllogism is made up of [MAJ-3.1],
[MIN-3.1], and [CON-3.1]. The second syllogism consists
of [MAJ-3.2], [MIN-3.2], and [CON-3.2]. [MAJ-3.3],
[MIN-3.3], and [CON-3.3] collectively make up the last
syllogism.

The minor premise of the first syllogism (i.e., [MIN-3.1])
is the outcome of NHSTP. The example depicted is one in
which the data permit the rejection of H0. To have estab-
lished statistical significance is to accept that H1 is true. To
assert that H1 is true in the first syllogism is to affirm the
consequent of the conditional proposition, [MAJ-3.1]. The
tentative conclusion is drawn that the antecedent of
[MAJ-3.1] is true. This conclusion is used as the minor
premise of the second syllogism to affirm the consequent of
[MAJ-3.2]. This leads to the tentative conclusion that the
antecedent of [MAJ-3.2] is true. Lastly, the conclusion of
the second syllogism serves as the minor premise of the
third syllogism. The antecedent of [MAJ-3.3] is considered
true tentatively when its consequent is affirmed by the
antecedent of [MAJ-3.2].

7. The modus tollens and affirming
the consequent asymmetry

Note that all three conclusions in Table 3 (i.e., [CON-3.1],
[CON-3.2], and [CON-3.3] ) are qualified with the caveat,
“in the interim (by virtue of experimental controls).” The
“in the interim” qualification is necessary because there are
alternative substantive hypotheses at the conceptual level
(see sect. 32, the “Alternative substantive hypothesis versus
statistical alternative hypothesis,” for an elaboration). The
“by virtue of experimental controls” qualification is neces-

sary because deductive logic does not permit accepting the
antecedent of a conditional proposition when its conse-
quent is affirmed (Copi 1982). Hence, the propriety of
accepting the antecedents of [MAJ-3.1], [MAJ-3.2], and
[MAJ-3.3] in Table 3 has to be warranted by experimental
controls, as discussed in section 8, “Induction, experimental
design, and controls.”

Suppose that the outcome of NHSTP does not permit
rejecting H0. The chain of reasoning is shown in Table 4, in
which the propositions in Table 3 are given a different set of
numbers for identification purposes. For example,
[MAJ-3.1] in Table 3 becomes [MAJ-4.1] in Table 4.

The minor premise of the first conditional syllogism in
Table 4, [MIN-4.1], is “Not-H1.” Hence, the antecedent of
[MAJ-4.1] is rejected by modus tollens. The minor premise
of the second syllogism [MIN-4.2] is, in such an event, the
denial of the consequent of [MAJ-4.2]. The modus tollens
rule leads to the rejection of the antecedent of [MAJ-4.2].
Hence, [MIN-4.3] is the negation of the antecedent of
[MAJ-4.2]. Consequently, [MIN-4.3] is the denial of the
antecedent of [MAJ-4.3]. The third application of the
modus tollens rule leads to the rejection of the antecedent
of [MAJ-4.3], namely, [P1.1].

Unlike the case of affirming the consequent, modus
tollens (i.e., denying the consequent of a conditional propo-
sition) permits the unambiguous rejection of the anteced-
ent of the conditional proposition. The difference between
the arguments in Tables 3 and 4 is the asymmetry between
modus tollens refutation and affirming the consequent con-
firmation of theories identified by Meehl (1967; 1978). It is
noted here that the asymmetry is not brought about by
using NHSTP. Instead, it is the consequence of the deduc-
tive reasoning implicated in corroborating theories. Hence,
it is necessary to consider why affirming the consequent of
[MAJ-3.1] (i.e., rejecting H0) does not guarantee the truth
of its antecedent.
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Table 4. The series of three embedding syllogisms (in roman font, italic, and boldface, respectively) underlying
the theory-corroboration procedure when the null hypothesis is not rejected

Major Premise 3 If [P1.1]1 in Table 1, then [P4.1].2 [MAJ-4.3]7
Major Premise 2 If [P4.1], then [P4.2].3 [MAJ-4.2]6

Major premise 1 If [P4.2], then H1.4 [MAJ-4.1]5

Minor premise 1 H1 is not true. [MIN-4.1]
Conclusion 1 Therefore, [P4.2] is not true. [CON-4.1]
Minor premise 2 [P4.2] is not true. [MIN-4.2]
Conclusion 2 Therefore, [P4.1] is not true. [CON-4.2]
Minor premise 3 [P4.1] is not true. [MIN-4.3]
Conclusion 3 Therefore, [P1.1] in Table 1 is not true. [CON-4.3]

1. [P1.1] in Table 1 The linguistic competence of a native speaker of English is an analog of the transformational grammar.
2. [P4.1] It is more difficult to process negative sentences than kernel sentences (i.e., the consequent of [P4.2]

in Table 1).
3. [P4.2] It is more difficult to remember extra words after a negative sentence than a kernel sentence (i.e., the

consequent of [P4.3] in Table 1).
4. H1 mean of extra-sentence words recalled after negative sentences , mean of extra-sentence words re-

called after kernel sentences.
5. [MAJ-4.1] is [P1.4] in Table 1.
6. [MAJ-4.2] is [P1.3] in Table 1.
7. [MAJ-4.3] is [P1.2] in Table 1.

8. Induction, experimental design, and controls

Boring (1954; 1969) and Campbell (1969; Campbell &
Stanley 1963) pointed out that to consider experimental
controls was to consider Mill’s (1973) methods of scientific
inquiry (with the exception of his method of agreement; see
Cohen & Nagel 1934). That is to say, underlying a valid
experimental design is one of Mill’s (1973) inductive
methods (viz., method of difference, joint method of agree-
ment and difference, method of residue, and method of
concomitant variations). This may be illustrated with Table
5, which depicts the repeated-measures 1-factor, 2-level
design used in the kernel-negative experiment described
earlier.

Table 5. The inductive basis of the repeated-measures 1-factor, 2-level design (Method of difference)

Condition
Independent variable
(sentence-type)

Control variables

C1 C2 C3 C4 C5 C6

Extraneous variables

E1 E2 . . . En Dependent variable

Control Kernel sentence NI T I R S C ER IT . . . M Number of extra
words recalled

Experimental Negative sentence NI T I R S C ER IT . . . M Number of extra
words recalled

C1 5 Normal intonation (NI)
C2 5 Task presentation via recorded tape (T)
C3 5 Interval between end of sentence and beginning of words (I)
C4 5 Rate of word presentation; 3/4 second per word (R)
C5 5 Structure of sentence; “Animal” subject, present perfect transitive verb (S)
C6 5 Fixed categories of words used in “extra” words (C)
E1 5 Extracurricular reading (ER)
E2 5 Individual interests (IT)
En 5 Kernel and negative sentences randomly mixed (M)

The design of the kernel-negative experiment is de-
scribed in Table 5 in a way that reflects the inductive
principle of Mill’s (1973) method of difference (see Chow
1992). Suppose that fewer words are recalled after negative
sentences than after kernel sentences, and that the differ-
ence is statistically significant. The control variables (C1,
C2, C3, C4, C5, and C6) can be excluded as explanations of
the significant difference because each of them (e.g., C1) is
represented by the same value (viz., NI) at both levels of the
independent variable. This is one of the “constancy of
condition” meanings of the term “control” (Boring 1954;
1969). 

The extraneous variables (E1, E2, . . . En ) may also be
excluded because each of them (e.g., E1 ) is assumed to be
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represented at the same level (viz., ER ). This assumption is 
justified by the fact that the same subject is tested in both
the experimental and control conditions. Consequently,
the difference between the “Kernel” and “Negative” condi-
tions is rendered unambiguous by the fact that the experi-
mental and control conditions are identical in all aspects
but one. The only difference is brought about by the
difference between the two levels of the independent vari-
able.

9. Conflating NHSTP with theory corroboration

NHSTP is misunderstood because no distinction is made
between the substantive and statistical hypotheses. Specifi-
cally, Meehl (1967) notes that there is a tendency to
conflate the substantive hypothesis with the statistical hy-
pothesis. This practice seems to be condoned when it is said
that “the critical distinction between a statistical hypothesis
and a substantive theory often breaks down. To perform a
significance test a substantive theory is not needed at all”
(Oakes 1986, p. 42, emphasis added).

What is said in the italicized sentence is true, but not
because the distinction between the substantive and statis-
tical hypotheses is unimportant or not real. It is true simply
because testing a hypothesis at the statistical level (see
Table 2) and corroborating a substantive hypothesis with
empirical data at the conceptual level (viz., Table 3) are
radically different exercises. This issue will be dealt with
further in the “Differences between the utilitarian and
theory-corroboration experiments” discussion in section 21.

10. Answers to questions Q1 and Q2

It may be concluded from the foregoing argument that, to
the extent that all recognized control variables and proce-
dures are included in the experiment, the statistically signifi-
cant result may be attributed to the independent variable
(Campbell 1969). The experiment is said to have inductive
conclusion validity under such circumstances (Chow 1987a;

Table 6. Violation of the formal requirement of method of difference when a subject variable is used

Subject variable
(faculty of study)

Control variables

C1 C2 C3 C4 C5 C6

Extraneous variables

E1 E2 . . . En Dependent variable

C Biological sciences NI T I R S C ER IT9 . . . M99 Number of extra
words recalled

E Physical sciences NI T I R S C ER9 IT . . . M9 Number of extra
words recalled

C1 5 Normal intonation (NI)
C2 5 Task presentation via recorded tape (T)
C3 5 Interval between end of sentence and beginning of words (I)
C4 5 Rate of word presentation; 3/4 second per word (R)
C5 5 Structure of sentence; “animal” subject, present perfect transitive verb (S)
C6 5 Fixed categories of words used in “extra” words (C)
E1 5 Extracurricular reading (ER or ER9)
E2 5 Individual interests (IT or IT9)
En 5 Kernel and negative sentences randomly mixed (M9 or M99)

1992). For this reason, the propriety of accepting the
antecedent of a conditional proposition by affirming its
consequent in Table 3 is justified with the “in the interim”
proviso.

The answer to Question Q1 may be seen readily from
Table 6. Suppose that the kernel-negative experiment is
conducted to assess the differential linguistic competence
of science students from two disciplines. Neither the
repeated-measures nor the completely randomized design
can be used. Hence, different selected groups of subjects
have to be assigned to the two levels of the independent
variable, faculty of study. Although it is possible to maintain
the constancy of condition in the case of some control
variables, such is not the case with the extraneous variables.
An extraneous variable (e.g., E1 ) may be represented at
different levels in the experimental and control conditions
(viz., ER and ER9, respectively) as a result of some funda-
mental differences between students of the two disciplines.

In short, the design of an empirical research is a descrip-
tion of how the data collection conditions are arranged. The
empirical study is an experiment if the arrangement of its
data collection conditions satisfies the formal requirement
of one of Mill’s (1973) inductive principles. The formal
requirement makes it possible to exclude as explanations
those factors that have been incorporated in the design as
control variables or procedures. Various aspects of the
formal requirement give rise to the three technical mean-
ings of “control”: (a) a valid comparison baseline, (b) con-
stancy of conditions, and (c) provisions for excluding pro-
cedural artifacts (Boring 1954; 1969; Chow 1987a; 1992).
Data interpretation becomes unambiguous to the extent
that all recognized alternative interpretations are excluded
by the judicious application of experimental controls
(Campbell 1969).

An empirical study is a quasi-experiment when its design
satisfies only some parts of the formal requirement. A
nonexperimental study (e.g., the correlational study) is one
in which there is no formal provision for satisfying the
formal requirement. Hence, there is no provision for ex-
cluding alternative interpretations of the results in nonex-
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perimental studies. Given the fact that experimental con-
trols serve to exclude explanations, it can be seen that data
from quasi-experimental and nonexperimental studies are
more ambiguous than experimental data. This is the answer
to Question Q2. The comparison between Tables 5 and 6
provides the answer to Question Q1. These answers to
Questions Q1 and Q2 lead to the realization that some
criticisms of NHSTP are motivated by ambiguities in data
interpretation. At the same time, a few criticisms arise
because the nature of H0 is misunderstood or misrepre-
sented.

11. The nature of H0 

What is clear from the discussion of Tables 2 and 3 is that
NHSTP does not determine whether or not the experi-
mental data support the substantive hypothesis. Supplying
the minor premise for the first syllogism in Table 3 or 4 is
the only contribution NHSTP has to theory corrobora-
tion. The theoretical meaning of the experimental data is
conferred by their logical relation with the experimental,
research, and substantive hypotheses. Although statistical
significance does not confer any theoretical meaning to
data, it does have an important function. Specifically, it
provides a rational basis for excluding chance influences
as an explanation of data. This important (but limited)
role may be seen from a closer examination of the statisti-
cal null hypothesis, H0.

12. H0, data, and chance influences

One way to paraphrase the antecedent of [P1.49] in Table 1
is to say that the subjects are indifferent to whether the to-
be-remembered sentence is a kernel or a negative sen-
tence. Consequently, under such circumstances any ob-
served difference between the means of the “Negative” and
the “Kernel” conditions is the result of chance influences
(or errors). That is, actual measurements made during data
collection may be affected by unintended nonsystematic
influences (i.e., errors) of various kinds. Consequently,
[P1.49] in Table 1 may be represented as the conditional
proposition, [P7.1], in Table 7. By the same token, [P1.4] in
Table 1 may be represented by [P7.2] in Table 7.

The representation adopted for H0 and H1 in Table 7
serves three functions. First, it highlights the meaning of

Table 7. The statistical null hypothesis (H0) and
the statistical alternative hypothesis (H1) as

components of conditional propositions

Where in
Table 1 Conditional proposition

[P1.49] If change, then H0. [P7.1]
[P1.4] If not chance, then H1. [P7.2]

If H0, then the test statistic is
distributed as a sampling
distribution of the difference
whose mean difference is zero.

[P7.3]

the null hypothesis. It is a hypothesis about the influence of
nonsystematic chance factors on data in the form of distribu-
ting the unintended influences randomly between the two
conditions. Moreover, the errors are normally distributed
with a mean of zero in each condition. Consequently, a
statistically significant result will be correctly interpreted to
mean only that an explanation of the data in terms of chance
influences can be excluded with the level of strictness
stipulated by the significance level (viz., a).

Second, Table 7 makes explicit the mutually exclusive
and exhaustive relationship between H0 and H1. That is,
the contrast between H0 and H1 is informed by neither the
substantive hypothesis nor the to-be-studied phenomenon.
Instead, the contrast is informed by the data-collection
procedure. It is a contrast between chance and not chance.
That NHSTP is actually mute at the level of the substantive
hypothesis may be seen from the fact that, in the event the
result is statistically significant, the nonchance factor re-
sponsible for the data is not informed by statistical signifi-
cance.

The third function of the tabular representation of Table 7 is
to make explicit the fact that H0 is not used as a categorical
proposition. It appears twice, once as the consequent of the
conditional proposition [P7.1] and once as the antecedent
of the conditional proposition [P7.3]. This state of affairs
means that, even if “H0 is never true” were true, its
contribution to the statistical decision process would not be
affected because the truth of either [P7.1] or [P7.3] is not
determined by the truth value of H0 alone, but by the truth
values of both the antecedent and consequent (Copi 1982).
At the same time, it is important to emphasize that H0 can
(and should) be true, the common belief to the contrary
notwithstanding.

13. “H0 is never true” revisited

Consider the antecedent of the conditional proposition,
[P1.39] in Table 1. It says that there is no difference in
difficulty in processing negative and kernel sentences. In
other words, H0 is a hypothesis about the relationship
between two theoretical populations, “Kernel” and “Nega-
tive” (viz., the hypothesized population of all subjects
presented with kernel sentences and that of all subjects
presented with negative sentences). In view of the fact that
two populations are implicated in H0 (not just one), it is not
clear what H0 is about when only one population is ac-
knowledged, as in the statement: “A null hypothesis is any
precise statement about a state of affairs in a population,
usually the value of a parameter, frequently zero” (Cohen
1990, p. 1307, emphasis added).

The assertion, “things get downright ridiculous when H0
is to the effect that the effect size (ES) is 0 – that the
population mean difference is 0” (Cohen 1994, p. 1000,
emphasis added), is questionable for a different reason.
Two theoretical populations are properly recognized in this
statement if “population mean difference” refers to the
mean of the sampling distribution of differences. It needs
two population distributions to give rise to a sampling
distribution of differences. However, it can be shown that it
is not ridiculous to have a mean difference of zero for the
sampling distribution of differences.

Recall the two theoretical populations, “Kernel” and
“Negative,” in the kernel-negative experiment They are
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procedurally defined populations. Specifically, they are
defined in terms of the two levels of the independent
variable, Sentence-type. The data collection situation in
experimental psychology can (and should always) be made
to ensure that the two procedurally defined populations will
be identical if the subjects are indeed unconcerned about
the difference between the two levels of the independent
variable. This is effected in different situations by using the
repeated-measures design, the matched-pair design, or the
completely randomized design.

As an example, consider the repeated-measures design.
The two test conditions (viz., presenting kernel sentences
and presenting negative sentences) are imposed on the
same group of subjects. This group of subjects becomes
two hypothetical samples when described in terms of the
two respective levels of the independent variable. The two
hypothetical samples are identical before being exposed to
the experimental manipulation. They remain identical if
what is said in the experimental hypothesis is false. Why
should the “Kernel” and “Negative” populations not have
the same mean if the complement of the experimental
hypothesis is true? Why is it ridiculous to expect the
difference between the “Kernel” and “Negative” popula-
tions to be zero at the statistical level if the subjects are
indifferent to the experimental manipulation? In other
words, critics have not taken into account the fact that the
null hypothesis is about neither the to-be-studied phenom-
enon nor some actual substantive populations. The null
hypothesis is about the relationship between two or more
procedurally defined hypothetical populations.

It is important to emphasize that the truth of H0 depends
on assigning subjects randomly to the experimental and
control conditions or using the same subjects in both
conditions. This iteration is necessary in view of a recent
attempt to question the assertion, “H0 is never true,” with
the following debatable scenario: “We give a placebo to a
control group and [the to-be-tested] drug to the experimen-
tal group. We then mix these participants into one group”
(Hagen 1997, p. 16). The data collection procedure de-
picted is unsatisfactory because it does not guarantee that
the formal requirement of Mill’s (1973) method of differ-
ence is met. This example may also be used to make the case
that the validity of NHSTP must be assessed in the context
of research methods.

In short, H0 can be true. More importantly, it ought to be
true if the data collection procedure is set up and conducted
properly (hence, the importance of Cohen’s [1994] and
Meehl’s [1990] caveat identified in Question Q2). The
assertion, “H0 is never true,” seems self-evident only when
H0 is used as a categorical proposition descriptive of an ill-
defined state of affairs. On the contrary, it is actually a
statement about how the data are collected, a point also
noted by Bakan (1966) and Phillips (1973).

More importantly, H0 is never used as a categorical
proposition. At one level of discourse (viz., [P1.49] in Table
1), H0 is a description of the data when certain assumptions
or conditions are satisfied in the data collection situation (a
point emphasized by Falk & Greenbaum 1995). At a
different level of discourse (i.e., [P1.59] in Table 1 or [P7.1]
in Table 7), H0 is a criterion for rejecting chance influences
as an explanation of data. What renders H0 indispensable is
that it stipulates the to-be-used sampling distribution of the
test statistic required for making the decision about chance
influences (see [P7.3] in Table 7 or [P1.59] in Table 1).

14. The ambiguity-anomaly criticisms of NHSTP

A statistically significant result is considered ambiguous by
critics. They also find the relationship between statistical
significance and the effect size anomalous. The ambiguity
and anomaly stem from the fact that statistical significance
may be the fortuitous consequence of having chosen a
particular sample size. Consider Studies A and B in Table 8.

Although the effect size is the same in both studies, the
result is significant in Study A, but not Study B. At the same
time, the sample size is larger in Study A than in Study B.
This is the basis of the sentiment shared among critics that
statistical significance is assured if a large enough sample is
used (see Thompson 1996, for a recent expression of this
view). By the same token, a result may be nonsignificant
because too small a sample is used. This difficulty may be
called the sample size-dependence problem.

Study A is significant and Study C is not significant. Yet,
the effect size is larger in Study C than in Study A. This is
considered an anomaly, and it may be called the incommen-
surate significance-size problem. This problem suggests to
critics that statistical significance is misleading at best,
harmful at worst. The harm NHSTP does to research is that
it precludes researchers from using more profitably the
quantitative information in the data. Specifically, if re-
searchers are satisfied with the NHSTP result, they may
neglect to determine the confidence interval estimate of
the parameter.

Studies A and D in Table 8 jointly show that the incom-
mensurate significance-size problem may assume the form
of the magnitude-insensitivity problem. Their results are
significant; but the effect in Study D is larger than that in
Study A. This useful information is not put to good use. The
same point may be illustrated with Studies B and C.
Although their results are not significant, the effect is larger
in Study C than B. Again, the magnitude of the effect
should be used (e.g., in meta-analysis; Glass et al. 1981;
Schmidt 1996).

A closer examination of the following issues shows that
these criticisms themselves are debatable. First, the ambi-
guity is a conceptual or methodological problem, not a
quantitative issue. Second, the effect size and NHSTP
express the difference between the means of the experi-
mental and control groups at different levels of abstraction.
Third, parameter estimation is not theory corroboration.
Fourth, nonstatistical concerns cannot be addressed with
statistics indices. Fifth, the validity of meta-analysis, as a
theory-corroboration tool, can be questioned.

Table 8. The putative ambiguity and anomaly of significance
tests illustrated with four fictitious studies

Study uE uC

Effect size1

d 5 (u E 2 uC )
sE

Statistical test
(e.g., t ) significant? df

A 6 5 0.1 Yes 22
B 25 24 0.1 No 8
C 17 8 0.9 No 8
D 8 2 0.5 Yes 22

1. Cohen (1987)
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15. The sample size-significance dependence
problem revisited

A persistent theme found in criticisms of NHSTP is that the
fortuitous choice of the sample size (e.g., an unjustifiably
large sample) may be responsible for a statistically signifi-
cant result. However, Questions Q1 and Q2 suggest that the
issue may have nothing at all to do with the sample size. The
real concern may be questions about the internal validity of
the research (Campbell & Stanley 1963; Cook & Campbell
1979). Be that as it may, that statistical significance may be
questioned suggests that there are good reasons why affirm-
ing the consequent of [MAJ-3.1], [MAJ-3.2], or [MAJ-3.3]
in Table 3 does not guarantee the truth of its antecedent.
This may be seen more readily from the following nonex-
perimental study.

Suppose that the effects of institutional constraints on a
rehabilitation programme is assessed with a correlational
study. It is found that the efficacy of the rehabilitation
programme varies inversely with the number of institu-
tional constraints. What does it mean to dismiss the study
for the simple reason that the sample size is unusually large
(e.g., n 5 1,000)?

Note that to question the statistically significant result in
this example is to question the conclusion that institutional
constraints are really related to the failure of the rehabilita-
tion programme. That is, this is a question about data
interpretation (a conceptual concern), not about the nu-
merical value of the test statistic or the sample size. Hence,
it is necessary to consider the “fortuitous sample size”
argument more closely, not in quantitative terms, but in
qualitative terms. That is, the issue is why it is more likely to
introduce confounding variables when more participants
are included in the correlational study.

To increase the sample size is to recruit more participants
in the correlational study. Chances are that the participants
would have to be recruited from more diverse settings.
Consequently, not only does the chance of having a con-
founding variable increase, it also becomes more difficult to
identify the confounding variable. The result (be it statis-
tically significant or nonsignificant) becomes more ambigu-
ous regarding the relationship between institutional con-
straints and the efficacy of the rehabilitation treatment of
interest. More important, it would not be valid to apply the
chain of reasoning depicted in Table 3 under such circum-
stances. As may be recalled from Table 5, the situation is
very different in the case of the experiment because of
experimental controls.

Why is the sample size-significance dependence prob-
lem not seen by critics as a concern about the internal
validity of the research? The real source of the ambiguity is
obscured by the suggestion that statistical significance may
be manipulated by cynical researchers. Specifically, it is
intimated by some critics that cynical researchers use
excessively large samples if their interests are vested in a
statistically significant result, but small samples if their
vested interests are served by a nonsignificant result. That a
tool may be misused speaks ill only of its users, however. It
does not mean that the tool itself is unsatisfactory, particu-
larly when nothing inherent in the tool invites its being
misused.

It would be possible to dismiss the cynicism issue as
irrelevant were there not the impression that psychologists
accept (or do not accept) a research conclusion solely on the

basis of statistical significance (or nonsignificance). The
impression is misleading. For example, cognitive psycholo-
gists do not accept or reject a finding merely on the basis of
statistical significance or nonsignificance (see, e.g., Col-
theart’s [1980] or Haber’s [1983], discussion of the iconic
store). Cognitive psychologists examine assiduously whether
or not (a) a proper experimental design has been used in the
experiment, (b) subjects have been given sufficient train-
ing, (c) all recognizable control variables or procedures are
properly instituted, and (d) the correct statistical procedure
is used.

In short, experimental psychologists are meticulous
about the internal validity of experiments (viz., both the
inductive conclusion validity and statistical conclusion va-
lidity). They are aware that a statistically significant result
may be ambiguous at the conceptual level as a result of
various features found in the data collection procedure or
situation. In fact, experimental psychologists are so consci-
entious about the inductive conclusion validity issues that
their attempts to eliminate conceptual or methodological
ambiguities have recently been dismissed as “methodola-
tory” (Danziger 1990) or “scientific rhetoric” (Gergen
1991).

The realization that the ambiguity issue has nothing to do
with NHSTP obviously has important implications for re-
ducing ambiguity. For example, the ambiguity cannot be
reduced by testing more subjects or by analyzing parts of
the data (as envisaged in Hunter & Schmidt’s [1990] psy-
chometric meta-analysis). Nor can another numerical index
be used to disambiguate the statistically significant result
(be it the effect size or statistical power). It is instructive to
recall the following observation:

The sum total of the reasons which will weigh with the investiga-
tor in accepting or rejecting the [substantive] hypothesis can
very rarely be expressed in numerical terms. All that is possible
for him is to balance the results of a mathematical summary,
formed upon certain assumptions, against other less precise
impressions based upon a priori or a posteriori considerations.
(Neyman & Pearson 1928, p. 176; emphasis and explication in
square brackets added) (Quote 1)

Two obvious examples of Neyman and Pearson’s (1928)
numerical terms are statistical power and the effect size. An
example of the a priori considerations is the choice be-
tween the repeated-measures and completely randomized
designs. The consideration as to whether or not there is any
confounding variable after the completion of the experi-
ment is an example of the a posteriori considerations in
question.

16. Two levels of abstraction: Statistical
significance and effect size

An assumption must be made explicit before one can assess
whether or not Studies A and C in Table 6 suggests that
statistical significance is anomalously related to the effect
size. Specifically, it is necessary to assume that statements
about statistical significance and the effect size are at the
same level of abstraction. A look at how t and the effect size
are respectively defined in Equations 1 and 2 suggests
otherwise.

[a] t 5 
(X̄1 2 X̄2) 2 (m1 2 m2)

SX̄12X̄2

(Equation 1)

[b] d 5 
(X̄1 2 X̄2)

si 
(Equation 2)
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The (m1 2 m2) component of the numerator of Equation 1
is zero if the implication of chance influences is that m1 5
m2 (Kirk 1984). Consequently, the numerator is the same in
both equations, namely, the difference between the two
sample means. On the one hand, the denominator in
Equation 1 is the standard error of differences. It is a
property of a theoretical distribution, namely, the sampling
distribution of differences. This distribution is at a level
more abstract than the population of raw scores. The
denominator in Equation 2, on the other hand, is the
standard deviation of one of the two conditions in that
equation. This is a property of the population of raw scores.
It follows that the test statistic used in NHSTP and the
effect size are indices belonging to two different levels of
abstraction. It seems neither valid nor appropriate to say
that the relationship between statistical significance and the
effect size is anomalous under such circumstances. This
issue of mixing two levels of abstraction will surface again in
the discussion of power analysis.

17. Effect size, the binary NHSTP decision,
and evidential support

Two points are emphasized in the anomaly critiques of
NHSTP. First, the NHSTP result is a binary decision (i.e.,
significant versus nonsignificant). Second, the effect size is
a continuous variable. However, the propriety of juxtapos-
ing statistical significance and the effect size may also be
questioned for the following reasons. First, these criticisms
are made with the assumption that H1 is the substantive
hypothesis. However, critics have not taken into account
the facts that H1 is the complement of H0, and that H0 is a
hypothesis about chance influences on data. In other words,
H1 is neither the substantive nor the experimental hypoth-
esis. It is but a statement to the effect that chance influ-
ences may be ruled out as an explanation of data. Conse-
quently, to say that the result is statistically significant is to
say something about the data and their collection. Statistical
significance does not say anything about the substantive
hypothesis.

The second reservation about critics’ juxtaposing statisti-
cal significance and the effect size is a meta-theoretical one.
To suggest supplementing statistical significance with the
effect size in the theory-corroboration experiment is to say
that the effect size has something to contribute to the
evidential support for the substantive hypothesis. The puta-
tive importance of the effect size can be discounted in view
of the argument that the warranted assertibility offered by
experimental data is conferred by the implicative relations
among the quartet of hypotheses (see Table 3) and the
inductive principle underlying the experimental design (see
Table 5), not by statistics. The effect size has no role in
either the deductive or the inductive reasoning depicted in
Tables 3 and 4. It follows that a larger effect size does not
mean a greater support for the substantive hypothesis (also
see Chow 1988). At the same time, the binary NHSTP
suffices to provide the minor premise for the first condi-
tional syllogism depicted in Table 3.

18. Effect size and practical importance

Something seems amiss to critics when nothing can be
learned about the practical impact of the statistically signifi-

cant research result. It is suggested that this shortcoming is
the result of relying on NHSTP. Moreover, it can be
rectified by reporting the effect size, particularly when the
binomial effect-size display (BESD) is used (Rosenthal &
Rubin 1979; 1982). This may be called the “effect informs
impact” claim. Of interest are (a) the fact that the argument
in support of the claim is incomplete, and (b) the reason
why the claim intrudes into the assessment of NHSTP. This
discussion will clarify the unwarranted practice of conflat-
ing statistical hypothesis testing with theory corroboration.

19. The “effect informs impact” claim revisited

There is a conceptual gap in the “effect informs impact”
claim. Consider the correlation coefficient, r, between
medication (aspirin vs. placebo) and myocardial infarction,
MI (absence or presence) in Rosnow and Rosenthal’s
(1989) illustration. The r is used as an index of the effect
size. What BESD does effectively is to convert the Pearson
r 5 0.034 into the “change in success rate” in the form of a
percentage, where “success” means the absence of MI in
the illustration. The “success rates” for the aspirin and
placebo conditions are given, respectively, by Equations 3
and 4, respectively, as follows:
[a] The success rate for the Aspirin Condition: 0.5 1 r/2 (Equation 3)
[b] The success rate for the Placebo Condition: 0.5 2 r/2 (Equation 4)

The change in success rate is simply the difference between
[a] and [b]. It turned out to be 3.4%. The conclusion is
drawn that the implications of an effect of this magnitude
are “far from unimpressive” (Rosnow & Rosenthal 1989,
p. 1279), despite the fact that an r 5 0.034 is statistically
nonsignificant.

The BESD is justified on the grounds that it is “intu-
itively appealing . . . [and] easily understood by re-
searchers, students, and lay persons” (Rosenthal 1983,
p. 11). The difficulty is that the validity of this justification
itself is by no means self-evident. It is simply not clear why
the said rate of 3.4% is impressive. Would the same rate of
change be impressive if the research were about the atti-
tude change of some obscure film critics? Would it be more
impressive if the film critics were prominent ones? It seems
that, at least in the “Aspirin-MI” example, a change in
success rate of 3.4% owes its impressiveness to the nature of
the to-be-monitored phenomenon (viz., incidents of MI),
not to the magnitude of the change itself.

There is also the following question. To whom is the
effect size impressive? A 3.4% change in the attitudes of
film critics may not impress those who are interested in
artistic issues. However, it may have a greater impact on
film producers when they consider the monetary implica-
tions. In other words, impressiveness is in the eye of the
beholder, not the size of the effect per se.

In short, by itself, the effect size says nothing about the
practical impact of the result. What is required is some
criteria that relate the effect size to the judgment about
impressiveness or practical impact. These criteria are out-
side the domain of statistics. Moreover, these criteria are
domain-specific. Consequently, the claim that BESD is the
general purpose index of practical impact is questionable.
At the same time, the propriety of criticizing NHSTP in
terms of practical validity may also be questioned because
statistics and practical impact belong to different domains
(Chow 1991a; 1991c).
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20. The intrusion of nonstatistical issues

The kernel-negative experiment used to introduce the
rationale and procedure of NHSTP is like neither the
examples used to introduce NHSTP in statistics textbooks
nor those used in criticisms of NHSTP. The commonly used
examples are studies designed to ascertain the effectiveness
of a course of action or treatment (e.g., using a new method
to teach statistics). Typically, the new method is applied to
one class of students, whereas the traditional method is
used in another class of students. The mean performance of
the two classes is tested with NHSTP. The only concern is
whether or not the new method of teaching produces a
better result. This is an issue about treatment assessment,
not about why the new method produces a better result.
Experiments of this type are tokens of the agricultural
model experiments (Hogben 1957; Meehl 1978; Mook
1983). Given their pragmatic objective, these experiments
may also be characterized as utilitarian experiments. To see
why nonstatistical issues intrude on the discussion of the
role of NHSTP in empirical research, it is necessary to
consider the nature of the utilitarian experiment.

21. The differences between the utilitarian
and theory-corroboration experiments

It may be recalled from Table 1 that experimental data in
the theory-corroboration experiment are at increasing de-
ductive distances from the experimental, research, and
substantive hypotheses. As may be seen from Table 9, the
same is not true of the utilitarian experiment for the
following reason. Given the specificity of the objective,
the choice of the independent and dependent variables in
the utilitarian experiment is restricted by the research
objective itself. This, in turn, determines the experimental
and research hypotheses. Consequently, the statistical and
substantive hypotheses are indistinguishable.

Additional differences between the utilitarian and the
theory-corroboration experiments have been shown in Ta-

Table 9. The logical relations among the to-be-investigated phenomenon, pragmatic, research,
and experimental hypotheses of the utilitarian experiment

What is said at the level concerned

To-be-investigated phenomenon A dissatisfaction with students’ current understanding of statistics.
Substantive (pragmatic) hypothesis Method E is more effective than Method C. [P9.1]
Research hypothesis If [P9.1], then Method E produces better understanding than

Method C.
[P9.2]

Experimental hypothesis If the consequent of [P9.2], then students taught with Method E
have higher scores than those taught with Method C.

[P9.3]

“Statistical Alternative hypothesis” If consequent of [P9.3], then H1.1 [P9.4]
Sampling distribution of H1 If H1, then the probability associated with a difference between

Methods E and C as extreme as 1.729 standard error units from an
unknown mean difference is not known (assuming df 5 19).

[P9.5]

Sampling distribution of H0 If H0,2 then the probability associated with a difference between
Methods E and C as extreme as 1.729 standard error units from a
mean difference of zero is 0.05 in the long run (assuming df 5 19).

[P9.59]

1. H1 5 mean of Method E . mean of Method C.
2. H0 5 mean of Method E # mean of Method C.

ble 10. These differences may be used to understand, as
well as to answer, some of the criticisms of NHSTP. To
begin with, it has been noted that the impetus for the
utilitarian experiment is primarily, if not exclusively, to find
the solution to a practical problem (e.g., students’ poor
understanding of statistics; see Row 1 in Table 1). That is,
the role of a theory, if there is one at all, is minimal in this
kind of experiment (hence, the “atheoretical” characteriza-
tion in Row 4).

Suggestive of this difference is the fact that, whereas
unobservable hypothetical entities or processes (e.g., the
language processor) are the concerns of the theoretical
endeavor in the theory-corroboration experiment, the sub-
ject matters of utilitarian experiments are observable activi-
ties or events (e.g., students’ test scores; see Row 2). The
result of the utilitarian experiment is used to guide a
particular course of action (e.g., whether or not to adopt the
new method of teaching; see Row 3). Experimental data in
the theory-corroboration experiment, on the other hand,
are used to assess whether or not there is evidential support
for an explanatory substantive hypothesis (see Row 3). No
pragmatic course of action follows. Nor is any practical
problem solved as a result of the theory-corroboration
experiment.

The experimental manipulation in the utilitarian experi-
ment is the to-be-assessed efficient cause itself (e.g., the
new method of teaching versus the traditional teaching
method; see Row 7). However, the independent variable
used in the theory-corroboration experiment is not an
efficient cause. For example, the presentation of a kernel or
a negative sentence does not shape or constrain subjects’
behaviour in the way a teaching method may shape stu-
dents’ learning. In presenting kernel and negative sen-
tences, the experimenter provides the hypothetical lin-
guistic processor different contexts or environments in
which to exhibit its theoretical properties. In other words,
the independent variable in the theory-corroboration ex-
periment is either a formal or a material cause, not an
efficient one.
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22. “Effect”: Vernacular and technical meanings

The contrast between the independent variable being the
efficient cause in the utilitarian experiment versus the
formal (or material) cause in the theory-corroboration
experiment has important implications for how “effect” or
“effective” is understood in the context of NHSTP. “Effect”
is used in its vernacular sense in the ambiguity-anomaly and
the insensitivity to effect size criticisms of NHSTP. This is
also the sense assumed (as well as congenial to) the utilitar-
ian experiment (see Rows 5 and 10 in Table 10). This is
understandable in view of the fact that the experimental
manipulation itself is substantively efficacious (e.g., method
of teaching). This does not mean, however, that it is justified
when the independent variable is not an efficient cause
(e.g., sentence type). What is important is that it is not even
justified when the experimental manipulation consists of
two efficient causes, but for a different reason.

To adopt the vernacular meaning of “effect” is to use a
statistically significant result to do something more than
rejecting chance influences as an explanation. It is to assert
that the research manipulation is the explanation (see also
sect. 31, “The specificity of H1 and related issues”). This
assumption is justified only to the extent that the inductive
conclusion validity is assured, however. In fact, as has been
noted earlier in section 15, “The sample size-significance
dependence problem revisited,” questions about a statis-
tically significant result arise because there are doubts
about the inductive conclusion validity. More important,
these questions are not statistical ones. Consequently, it is
doubtful that specifying the effect size or determining the
confidence interval estimate would allay the nonstatistical

Table 10. Some differences between the agricultural (utilitarian) model and theory-corroboration experiments

Agricultural model (utilitarian) Theory corroboration

1. Impetus To solve a practical problem; reflexive
data collection.

To explain a phenomenon; independent
of data collection.

2. Subject matter The practical problem involving
observable events.

Unobservable hypothetical entity and
its theoretical properties.

3. Consequence of research Take a particular course of action;
closure of investigation.

Accept tentatively, revise or reject the
theory; no closure to the investigation.

4. Role of theory Atheoretical. To-be-tested theory explicitly stated;
used to guide experimental design.

5. Substantive question “Is the treatment effective?”
“How effective is the treatment?”

“Why does the phenomenon occur?”

6. Experimental hypothesis The practical question itself. Qualitatively different from the to-be-
assessed substantive hypothesis.

7. Experimental manipulation The to-be-assessed efficient cause it-
self.

Different from the to-be-explained
phenomenon.

8. Dependent measure The practical problem itself. Different from the to-be-explained
phenomenon.

9. Statistical significance To indicate that the explanation of data
in terms of chance variations can be
ruled out at the a level.

10. Effect Substantive efficacy (i.e., the
consequence of an efficient cause).

The difference between the means of
two conditions (i.e., the consequence of
a formal or a material cause).

11. Ecological validity Necessary. Irrelevant, may even be detrimental.

concerns that underlie the reservations about the statis-
tically significant result.

Recall that H0 is a statement about the consequence of
chance influences on data collection. “Effect” at this level of
discourse refers to the difference between the means of two
data collection conditions. The NHSTP concern is whether
or not the difference is large enough for the rejection of the
explanation in terms of chance influences. This technical
meaning of “effect” is different from its vernacular mean-
ing. It does not implicate any assumption of efficacy. More
importantly, by itself, NHSTP does not identify the reason
for the sufficiently large difference that leads to the “statis-
tically significant” decision. Nor should there be any reason
to expect an answer coming from NHSTP when the issues
implicated are nonstatistical ones.

In sum, critics’ concern about the effect size may be
represented by the questions tabulated in the left-hand
column of Table 11 (see Rosnow & Rosenthal 1989). These
questions are asked because “effective” is interpreted in its
vernacular sense. However, Question [PV-2] does not di-
rectly lead to [PV-3] or [PV-4]. It is necessary to provide an
independent set of criteria outside the domain of statistics
to justify asking Question [PV-3] or [PV-4] in conjunction
with Question [PV-2] (see sect. 19, “The ‘effect informs
impact’ claim revisited”). Such a set of criteria is not
available.

Suppose that the technical meaning of “effect” is adopted
in discussing NHSTP. Although Question [CR-1] is literally
the same as [PV-1], it leads to an entirely different set of
questions relating to the difference between two data
collection conditions brought about by the experimental
manipulation. It may be seen readily that, with the excep-
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Table 11. Different sets of research questions pertinent to practical validity (PV) and conceptual
rigor (CR) for the utilitarian and theory-corroboration experiments, respectively

Practical validity concerns (utilitarian research) Conceptual rigor concerns (theory-corroboration research)

The independent variable is the efficient cause. The independent variable is the material or formal cause.
[PV-1] Is Treatment T effective? [CR-1] Is Treatment T effective?
[PV-2] How effective is Treatment T? [CR-2] Is the independent variable a valid choice?
[PV-3] How impressive is Treatment T? [CR-3] Do the data warrant the acceptance of Theory K, which

underlines the choice of the dependent variable?
[PV-4] Is Treatment T important? [CR-4] Is the implementation of the independent variable valid?

[CR-5] Does the study have hypothesis validity?

tion of Question [CR-5], these are questions about the data-
collection conditions, particularly the inductive principle
that underlies the experimental design.

23. Power analysis

The power of a statistical test has recently become an
important consideration in the assessment of empirical
studies in psychology. Cohen’s (1987) power analytic ap-
proach to empirical research has the following themes.
First, if Phenomenon P exists, its effects must be detect-
able. Second, the evidence for the truth of a substantive
hypothesis about Phenomenon P is the detectability of the
effect envisaged in the hypothesis. Third, the substantive
hypothesis is represented by H1 in NHSTP. Fourth, to
detect the effect is to obtain statistical significance (i.e., to
accept H1 by rejecting H0). Hence, statistical significance is
indicative of the truth of H1 or the fact that Phenomenon P
exists. These four interconnecting themes may collectively
be identified as the existence-detectability-significance
thesis. For this reason, it is important for power analysts to
know the a priori probability of obtaining statistical signifi-
cance. That a priori probability is the power of the statisti-
cal test (Cohen 1987; see also Mosteller & Bush 1954).

The Type II error is assumed by critics to have real-life
consequences. Hence, NHSTP users are faulted for ignor-
ing it as a result of their exclusive obsession with the Type I
error. With the advent of power analysis, the Type II error
can now be controlled by specifying the level of statistical
power desired for the investigation. This is possible because
the power of a statistical test is (1 2 b), where b is the
probability of committing the Type II error. The value of
can be controlled by setting the level of the power.

That power analysis is currently well received is under-
standable in view of the facts that critics are convinced that
NHSTP is problematic and that power analysis is presented
as a remedy for the difficulties of ambiguity and anomaly
attributed to NHSTP. However, if the criticisms of NHSTP
themselves are debatable, it should become easier to con-
sider power analysis in a more judicious way. There are
good reasons to question the existence-detectability-
significance thesis of power analysis.

Consider its first theme, namely, that if H1 is true, there is
a detectable effect. This theme is contrary to the fact that
the tenability of some hypotheses depends on not rejecting
H0 (i.e., not detecting any effect, in the parlance of power
analysis). An example is Schneider and Shiffrin’s (1977)
study of automatic detection. The third theme of the thesis,

that H1 is the substantive hypothesis, is debatable in view
of the quartet of hypotheses identified in Table 1 and the
discussion in section 12, “H0, data, and chance influences.”
Consequently, all power analytic assertions based on identi-
fying H1 with the substantive hypothesis are questionable.

The detectability of the effect is equated with statistical
significance in the second theme of the existence-
detectability-significance thesis. This makes explicit an im-
plicit assumption in power analysis that NHSTP is the same
as the theory of signal detection procedure (TSD). An
examination of this NHSTP-TSD affinity assumption re-
veals additional conceptual difficulties in power analysis.

24. The NHSTP-TSD affinity in power analysis

Indicative of the NHSTP-TSD affinity envisaged in power
analysis are assertions such as: “Since effects are appraised
against a background of random variation” (Cohen 1987,
p. 13), and “[the said appraisal consists of ] detecting a
difference between the means of populations A and B . . . ”
(Cohen 1987, p. 6, emphasis added). At the level of
rationale, the appeal is made to Neyman and Pearson’s
(1928) emphasis on the posterior probability. It is believed
that researchers first determine what a sample statistic is
(e.g., X). They then ask (or wish to ask) what the probability
is that the sample has been selected from Population P with
parameter m (see Cohen 1994). An appeal to the a poste-
riori probability in this “from sample statistic to population
parameter” manner is also found in a TSD analysis.

It is recognized in TSD that an observer’s response bias is
a function of the prior odds (viz., the probability of the noise
event to that of the signal event) and the payoff matrix (i.e.,
the costs for committing errors and the gains caused by
making a correct detection). Something very similar is
suggested in power analysis. Specifically, it is suggested that
the placement of the decision axis used to make the statisti-
cal decision should reflect a balance struck between statisti-
cal power and a (Cohen 1987, p. 5). This is achieved by
taking into account the ratio of the probability of the Type II
error to the probability of the Type I error. Researchers are
further urged to pay attention to “the relationship between
n and power for [their] situation, taking into account the
increase in cost to achieve a given increase in power”
(Cohen 1965, p. 98; Cohen’s emphasis).

25. Issues raised by the NHSTP-TSD affinity

A correspondence between two sets of descriptive terms
becomes obvious if the affinity between NHSTP and TSD
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is recognized. Of particular interest is that between statisti-
cal power and hit rate. It renders questionable the follow-
ing assertion: “The power of a statistical test is the proba-
bility that it will yield statistically significant results”
(Cohen 1987, p. 1, emphasis added). (Quote 2)

26. Statistical power: A conditional probability

The Type I error is made when the researcher rejects a
true H0; this is analogous to committing a false alarm in
TSD. Power analysts use [H1 True] as a subcolumn head-
ing in the upper left panel of Table 12. The Type II error
is committed when the researcher fails to reject H0 when
H1 is true. The logical complement of Type II error (viz.,
rejecting H0 when H1 is true) in NHSTP is equivalent to
a hit in TSD (see the upper right panel). Note that a hit
in TSD refers to a “Yes” response contingent on the pres-
ence of a signal event. That is, a hit is a characterization
of the observer’s behavior, given that the signal is present.
It says nothing about the signal event per se. It follows
that the hit rate in TSD is a conditional probability,
namely, the probability of an observer saying “Yes” when
a signal event does indeed occur. In other words, the hit
rate says nothing about the exact probability of the pres-
ence of a signal event.

At the same time, as may be seen from the two lower
panels of Table 12, the TSD analog of statistical power is the
hit rate. Hence, the statistical power is a conditional proba-
bility (see also Chow 1991c). That is to say, knowing the
power of a test (a conditional probability) is not the same as
knowing the probability of obtaining statistical significance
(an exact probability). More important, given the NHSTP-

Table 12.  The correspondence between some concepts (upper left) and their probabilities (lower left) in NHSTP and concepts
(upper right) and their probabilites (lower right), given the NHSTP-TSD affinity in power analysis.

Upper
Panel

NHSTP Concepts TSD Concepts

Decision State of affairs TSD response State of affairs

H0 True H0 False
[H1 True]

Noise Signal

“Not reject” Correct
acceptance

Type II error “No” Correct
rejection

Miss

“Reject” Type I error Correct
rejection

“Yes” False alarm Hit

Lower Panel

NHSTP Concepts TSD Concepts

Decision State of affairs TSD response State of affairs

H0 True [H1 True] Noise Signal
“Not reject” p(Correct

acceptance)
p(Type II
error) 5 b

“No” Correct
rejection rate

Miss rate

“Reject” p(Type I
error) 5 a

Power 5
(1 2 b)

“Yes” False alarm rate Hit rate

TSD affinity, the statistical power index says something
about the researcher, not H1, in much the same way the hit
rate says something about the observer, not the signal event.
In short, statistical power does not (and cannot) enlighten
us as to the probability of obtaining statistical significance.

27.  Statistical power: A misleading sense
of efficacy

An efficacious capability is attributed to the statistical
procedure in Quote 2. It suggests that statistical signifi-
cance is reached by virtue of the numerical index, statisti-
cal power (see the emphasis in Quote 2). This assertion is
misleading because, at the level of statistics, statistical
power simply refers to the cumulative probability over a
range of parameter values (viz., all values that are as
extreme as the critical values of the test statistic). No
efficacy of any sort is implicated at this level of discourse.
A nonstatistical theoretical justification is required if an
efficacious capability is attributed to statistical power. Be-
cause no such justification is offered, it is only proper not
to attach any extra-statistical meaning to the term statisti-
cal power.

There is no a priori reason why the decision to reject H0
in the event it is false should not simply be called Type II
correct decision. Power analysis might not have been so
readily accepted had a nonevocative term like not-b been
used instead of power. Perhaps an excess and unwarranted
meaning is attributed to a conditional probability as a result
of its being labeled with the evocative term power, a
connotative meaning of which is being efficacious. The
same is also true of statistical significance.
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28. Graphical representation of statistical power,
effect, and NHSTP

It is taken for granted in the discussion so far that the
concept, statistical power, is valid. The validity of power
analysis becomes more questionable if there are reserva-
tions about the validity of statistical power itself. That
Quote 2 is inconsistent with statistical power being a
conditional probability is one such reservation. There are
additional reservations.

29. Two levels of abstraction: Statistical
significance and statistical power

Consider the assertion: “A salutary effect of power analysis
is that it draws one forcibly to consider the magnitude of
effects” (Cohen 1990, p. 1309). This assertion is made
because of the functional relationship between statistical
power and effect size (given n and a) envisaged in power
analysis. This functional relationship is readily seen from
Panels A and B of Figure 1. Before proceeding any further,
it must be noted that Cohen (1965; 1987; 1992a; 1992b)
does not use any graphical representation when he dis-
cusses statistical power, effect size or the functional rela-
tionship between the two. Nonetheless, Figure 1 is used for
ease of exposition. Its use is justified by the fact that it is
consistent with how d and statistical power are defined in
power analysis.

The x-axis in both panels represents population scores (as
stipulated by how d is defined in Equation 2 in sect. 16).
The left and right distributions in either panel represent the

Figure 1. The graphical representation of two effect sizes
(Panels A and B), and the corresponding differences between two
means in raw-score units (Panels C and D), as well as in standard
error units (Panel E).

control and experimental distributions, respectively. The
effect size is shown by the distance between the two
distributions, and statistical power by the area shaded with
slanting lines. To power analysts, Panels A and B represent
two situations in which the desired effect is larger in Panel
B than in Panel A, and Panel B represents a more powerful
test than Panel A. Of interest is whether or not research
manipulations that are expected to be differentially effi-
cacious would have a different impact on NHSTP.

30. H0 and research manipulation efficacy

The pair of population distributions in the “small effect”
situation (viz., Panel A in Fig. 1) gives rise to the lone
sampling distribution of the difference depicted in Panel C
of Figure 1. Similarly, the pair of population distributions in
the “large effect” situation brings about another lone sam-
pling distribution of the difference (i.e., the one depicted in
Panel D of Fig. 1). The two sampling distributions of the
difference in Panels C and D have the same standard error
of the difference seen in the present example. However, the
two sampling distributions cover different parts of the
difference between two means continuum in raw-score
units (viz., from -2.5 to 4.5 in Panel C versus from 20.5 to
6.5 in Panel D).

Consider the numerator used in calculating the test sta-
tistic, t. It is often written as (X1 2 X2). However, it is re-
ally a short-hand form for [(X1 2 X2) 2 (m1 2 m2) 5 0]. As
has been noted before, the (m1 2 m2) component is left out
when it is numerically equal to 0 (see Kirk 1984). The distri-
bution in the top panel of Figure 2 represents a sampling
distribution of the difference for a situation in which m1 2
m2 5 0. That is, the mean difference in the sampling
distribution of the difference between two means is zero.

Power analysts suggest that the desired difference, (X1 2
X2), may be 3.0 (or 1 or any definite value), rather than 0.
The numerator now becomes [(X1 2 X2) 2 (m1 2 m2) 5
3.0] or [(X1 2 X2) 2 (m1 2 m2) 5 1.0]. That is, the mean
difference in the sampling distribution of the difference
implicated in NHSTP is 3.0 (or 1.0), and it is graphically
represented in the bottom (or middle) panel of Figure 2.
The three sampling distributions in the three panels of
Figure 2 have the same standard error of difference, but
different values for the mean difference (viz., 0, 1, and 3.0).
They represent the sampling distribution under H0 in three
different situations. Specifically, the bottom panel repre-
sents a research manipulation expected to be more effi-
cacious than the one depicted in the middle or top panel.

Depicted on the x-axis of the graphical representation in
any panel of Figure 2 is the range of possible values of the
difference between two means. In other words, the three
panels in Figure 2 collectively show that the difference in
the expected efficacy of the research manipulation is repre-
sented by the spatial displacement of the sampling distribu-
tion of the differences between two means along the
continuum of all possible values of the difference between
two means. This state of affairs is different from the
impression conveyed by Panels A and B in Figure 1.

In carrying out NHSTP, only one sampling distribution is
used (viz, the one contingent on H0 being true). Moreover,
the researcher uses a standardized form of the sampling
distribution depicted in either Panel C or D of Figure 1
(viz., the z or t distribution; see Siegel 1956). That is,
regardless of the mean difference in raw-score units, the
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Figure  2. The sampling distribution of the difference in raw-
score units when the mean difference is 0 (top panel), 1 (middle
panel), and 3 (bottom panel).

standardized representation of the to-be-used sampling dis-
tribution of the difference remains the same (viz., Panel E in
Fig. 1). More importantly, the location of the decision axis
vis-à-vis the mean of the sampling distribution of the dif-
ference remains unchanged for the same a level. It follows
that the outcome of NHSTP is not affected by the desired
effect or expected efficacy of the research manipulation.

Figure 1 shows that two distributions of population
scores converge on one standardized distribution via a lone
sampling distribution of the test statistic. Panel A or B in
Figure 1 shows that it takes two population distributions to
depict statistical power, whereas Panel E shows that only
one sampling distribution is used to depict NHSTP. More-
over, two different levels of discourse are implied in Panels
A (or B) and E. This demonstrates that it is impossible to
represent statistical power graphically without misrepre-
senting NHSTP. It casts doubt on the validity of the concept
of statistical power.

Some important points may now be summarized. First, no
distribution based on H1 is implied in NHSTP (see Panel E
of Fig. 1). Second, the mean difference in raw-score units of
the sampling distribution of difference reflects the theoreti-
cal difference between two population means. When ex-
pressed in terms of the raw-score unit, this difference is
graphically represented by the spatial displacement of the

sampling distribution on the difference between two means
continuum (see the three panels in Fig. 2).

Third, it is not possible to represent graphically the
conditional probability, statistical power, if the rationale of
NHSTP is properly represented with a single sampling
distribution of the difference between two means. Fourth,
the desired effect of the research manipulation (in the
technical sense of the word) has no impact on NHSTP
because the to-be-employed sampling distribution is stan-
dardized (e.g., in the form of the appropriate t distribution)
before being used to make the “chance versus nonchance”
decision.

31. The specificity of H1 and related issues

For nonpower analysts, “Type II error” in the upper left
panel of Table 12 refers to the error committed when a false
H0 is not rejected (i.e., ignore the [H1 True] column
heading). No mention is made of H1 in this definition. It
may be recalled from the lower panel of Table 2 that H0 and
H1 are mutually exclusive and exhaustive. This is empha-
sized in Table 7 by depicting that H0 is the implication of
chance influences, and that H1 is the implication of some
ill-defined, nonchance influences. It follows that, although
H0 and H1 are mutually exclusive and exhaustive alterna-
tives, “H0 False” is not synonymous with “H1.”

Defining “Type II error” in terms of “H0 False” instead of
[H1 True] in the upper left panel of Table 12 helps maintain
the distinction between inductive conclusion validity and
statistical conclusion validity. Specifically, whereas NHSTP
is used to decide between chance influences and nonchance
influences (see Tables 2 and 7), inductive reasoning is
employed to identify the nonchance factor involved (see
Table 5). It is also important that H1 is numerically non-
specific (see [P1.5] in Table 1).

To define power in power analysis, “Type II error” is
defined as the error committed in the event that H1 is true.
That is, it is necessary to use the [H1 True] heading in the
upper left panel of Table 12. Moreover, H1 is given a
specific nonzero numerical value in power analysis. This
effectively changes the conceptual meaning of H1 from an
implication of nonchance influences to the consequence of
a specific efficient cause. This is reminiscent of the conse-
quence of using “effect” in its vernacular sense discussed in
section 22: “Effect: Vernacular and technical meanings.”
Consequently, H0 and H1 are no longer mutually exclusive
and exhaustive in the power analytic account of NHSTP.
More important, in making the meaning of H1 numerically
specific, power analysts may have eschewed the distinction
between the two types of internal validity. NHSTP is given
the additional role that should be played by inductive logic.

The power analytic practice of making H1 numerically
specific is consistent with the Multiple-H1 Assumption
view that there are, in fact, multiple numerical alternatives
to H0 (Neyman & Pearson 1928; Rozeboom 1960). How-
ever, this assumption should have no bearing on NHSTP, as
may be recalled from the “H0 and research manipulation
efficacy” discussion in section 30. Why is there the em-
phasis on multiple numerically specific H1’s? The answer
may be the fact that the term “alternative hypothesis” is also
used in another sense, albeit at a different level of dis-
course.

Given any to-be-explained phenomenon, there are alter-
native explanatory theories at the conceptual level (Popper
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1968a; 1968b). This state of affairs may be characterized as
the Reality of Multiple Explanations view in subsequent
discussions. In fact, different psychologists often explain
the same phenomenon with various substantive hypoth-
eses. Moreover, diverse hypothetical structures or func-
tions are postulated in these competing theories.

For example, some psychologists prefer Fillmore’s
(1968) case grammar or Yngve’s (1960) “Depth” model to
Chomsky’s (1957) transformational grammar. These three
substantive hypotheses lead to different research and ex-
perimental hypotheses (à la the schema depicted in Table
1). As these experimental hypotheses may implicate differ-
ent independent and dependent variables in diverse experi-
mental situations, they lead to qualitatively different H1’s.
The distinction between the Multiple-H1 Assumption and
the Reality of Multiple Explanations views depicted in
Table 13 can be used to defend NHSTP against the
Multiple-H1 Assumption critique of NHSTP.

32. Alternative substantive hypothesis
versus statistical alternative hypothesis

Consider first the Multiple-H1 assumption column in Table
13. In terms of the number of extra words recalled, H1 of
the kernel-negative experiment is shown in Row [a]. Two
additional alternatives to H0 are shown in Rows [b] and [c]
in the Multiple-H1 assumption column. Each one of these
statistical alternative hypotheses is a point prediction. How-
ever, if the Multiple-H1 Assumption and the Reality of
Multiple Explanations view were the same, it would be
necessary to show something like what follows: Alternative
[a] is an implication of the transformational grammar, Alter-
native [b] is derived from the case grammar, and Alternative
[c] follows logically from Yngve’s (1960) “Depth” model.
Ironically, were this the case, the researcher should be very
unhappy about the three theoretical alternatives for the
following reason.

Such a state of affairs occurs when the three numerical
alternatives are possible outcomes in the same experimen-
tal context (e.g., the same independent variable is manipu-
lated, as indicated by the subscripts used in the Multiple-H1
assumption column). This takes place when there is no
qualitative difference among the theoretical structures or
mechanisms envisaged in the three substantive hypotheses.
Consequently, they do not differ in terms of how well they
explain our linguistic competence at the conceptual level.
This means that the three hypotheses give the same qualita-

Table 13. The distinction between statistical alternative
hypothesis and alternative explanatory hypothesis

Multiple-H1 assumption Reality of multiple explanations

[a] H1: (unegative 2 ukernel) , 0 [i] H1: (unegative 2 ukernel) , 0
H0: (unegative 2 ukernel) 5 0 H0: (unegative 2 ukernel) 5 0

[b] H19: (unegative 2 ukernel) 5 23 [ii] H19: (uca 2 ua) . 0
H09:(unegative 2 ukernel) 5 0 H09: (uca 2 ua) 5 0

[c] H199: (unegative 2 ukernel) 5 5 [iii] H199: (un2p 2 un2n) ± 0
H099: (unegative 2 ukernel) 5 0 H099: (un2p 2 un2n) 5 0

ca 5 counter-agent; a 5 agent
n2p 5 negative sentence with positive meaning; n2n 5 negative sen-
tences with negative meaning

tive prescription in a well-defined task context. In other
words, the three hypotheses are merely variations of the
same genre under such situations. The choice among the
three alternatives becomes a nontheoretical one. In what
sense does the quantitative difference in question matter if
it does not make any difference at the explanatory level?

Consider now the “Reality of multiple explanation” col-
umn in Table 13. To begin with, additional independent
variables generally are necessary for the experiment to test
multiple explanatory hypotheses simultaneously. For exam-
ple, it may become necessary to manipulate Sentence mo-
dality (e.g., agent versus counter-agent ) to test the case
grammar. The depth of the sentence structure would have
to be manipulated if the “Depth” model is being tested.
Specifically, it may be necessary to manipulate the type of
negative sentences being used (e.g., a negative sentence with
a positive meaning versus one with a negative meaning).

A prerequisite for a successful theory-corroboration ex-
periment is that different experimental prescriptions are
indicated by the qualitatively different theories. For exam-
ple, the prescription of the transformational grammar is in
Row [i]. The case grammar prescribes H19 in Row [ii]. The
“Depth” model prescribes H10 in Row [iii]. As may be seen
from the subscripts of the various means, the three differ-
ent statistical alternative hypotheses are the implications of
their respective experimental hypotheses at the statistical
level.

33. A triad of hypotheses: The substantive
hypothesis, H1 and H0

Two things should be emphasized. First, multiple concep-
tual alternative hypotheses give rise to their respective
statistical alternative hypotheses. Second, the multiple sta-
tistical hypotheses (e.g., H1, H19, and H10 in Table 13) are
not alternatives to one single H0. They have their own null
hypotheses (viz., H0, H09, and H00, respectively) even
though these null hypotheses may be numerically equal to
zero. They are zero under different conditions, however.
This is indicated by the fact that three different conceptual
hypotheses implicate different independent variables (viz.,
sentence-type, case, and negative-type, respectively, as may
be seen from the subscripts in Table 13). In other words,
each of these multiple null hypotheses describes what
chance variations are like under its own unique set of
conditions.

In short, the differences among the experimental expec-
tations prescribed by diverse alternative substantive hy-
potheses at the conceptual level are not a matter of numeri-
cal differences such as u1 5 5, u2 5 10, u3 5 15, and the
like. Consequently, the exclusion of unwarranted alterna-
tive hypotheses at the conceptual level is also not a matter of
choosing among numerically different H19s (Chow 1989). It
involves testing different H19s defined by dissimilar data-
collection conditions. Each of these H19s has its own H0.

34. Statistical power and sample size

The best known use of statistical power is for disambiguat-
ing the difficulties brought about by the arbitrariness,
ambiguity, or anomaly attributed to NHSTP. It is argued
that, if the test is of sufficient power, one can be sure that
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the statistically significant result is genuinely significant,
and that a nonsignificant result is really nonsignificant. An
important stipulation is that an appropriate sample size be
determined with the help of the general purpose Sample
Size Tables (Cohen 1987). Researchers can determine the
appropriate sample size with reference to (a) the desired
power, (b) the desired effect size, and (c) the a level to be
adopted. An alternative set of tables may be found in
Kraemer and Thiemann (1987). This important function of
statistical power is best summarized as follows:

From a power analysis at, say, a 5 .05, with power set at, say, .95,
so that b 5 .05, also, the sample size necessary to detect this
negligible effect with .95 probability can be determined. Now if
the research is carried out using that sample size, and the result
is not significant, as there had been a .95 chance of detecting this
negligible effect, and the effect was not detected, the conclu-
sion is justified that no nontrivial effect exists, at the b 5 .05
level. (Cohen 1990, p. 1309) (Quote 3)
This mechanical approach to sample-size determination

is inappropriate for experimental studies. To begin with, no
reference is made in power analysis to the experimental
design used. In general, fewer subjects are required when
the repeated-measures design is used than when using the
completely randomized design. There are other consider-
ations when the matched-pair (for the 1-factor, 2-level
design) or matched-group (for the multi-factor, multi-level
design) is used. The stability of the data may be influenced
by the success of the matching procedure.

Another unsatisfactory feature of the power analytic way
of determining the sample size is its disregard for how well-
trained the experimental subjects are. This, in turn, is
dependent on the nature of the experimental task used.
Given the same experimental task, data stability may be
secured by using a few well-trained subjects when an
unusual task like Sperling’s (1960) partial-report task is
used. Sometimes the nature of the investigation demands a
large sample of naive subjects (e.g., Keppel & Underwood’s
1962 study of proactive interference). Furthermore, the
number of subjects required may be influenced by the
number of experimental sessions (as well as the number of
trials within an experimental session). These important
procedural considerations have not been taken into account
in power analysis.

In sum, the concern with sample size has a lot to do with
data stability. This issue cannot be settled with a mechanical
procedure or a general purpose tool for the simple reason
that data stability is not determined by the sample size alone.
It is also affected by the nature of the experimental task, the
amount of practice the subjects have before data collection,
and the experimental design used. These considerations are
some of the a priori considerations recommended by Ney-
man and Pearson (1928) in Quote 1 (sect. 15).

35. A criticism of NHSTP with a Bayesian
overtone

As may be recalled from the “Null-hypothesis significance-
test procedure (NHSTP)” discussion in section 4, impor-
tant to NHSTP is the associated probability, p. It is the
conditional probability, p (DatauH0). Some critics find the
reliance on p unsatisfactory for various reasons. For exam-
ple, p is often misunderstood or knowing p (DatauH0) is not
knowing p (H0uData). At the same time, the following
assertion is made in power analysis:

Now, what really is at issue, what is always the real issue, is the
probability that H0 is true, given the data, P (H0uD ), the inverse
probability. (Cohen 1994, p. 998) (Quote 4)

This concern with the inverse probability is like the Baye-
sian appeal to the posterior probability. To find NHSTP
wanting for this reason goes beyond statistics, however. It
raises instead questions about the nature or purpose of
conducting empirical research. Of interest to the present
discussion are methodological issues underlying the Baye-
sian, as well as the power analytic, theme that empirical data
are collected to ascertain the posterior (or inverse) proba-
bility of the hypothesis of interest. The methodological
issues are (a) the prototype of empirical research envisaged
in the Bayesian approach, (b) the nature of the Bayesian
hypothesis, and (c) the role of replication studies in empiri-
cal research.

36. The Bayesian hypothesis and sequential
sampling procedure

It is assumed in the Bayesian approach that, before collect-
ing data, the researcher attributes a prior probability (viz.,
the degree of belief ) to the hypothesis. The research
objective is not to ascertain the tenability of the hypothesis.
Instead, data are collected to adjust the prior degree of
belief with the Bayesian theorem. The new degree of belief
in the hypothesis is the posterior probability. Given the
Bayesian theorem, the evidential support for the hypothesis
offered by the current data may not be sufficient to over-
come the impact of the prior degree of belief. Hence, it is a
Bayesian theme that researchers must take into account the
prior probability of the hypothesis when they interpret the
data.

That the Bayesian approach is of limited applicability to
psychological research may be seen more readily after a
discussion of the type of data collection exercise suitable for
Bayesian analysis. More important, it may be seen that the
Bayesian approach cannot be used for theory-corroboration
purposes because it cannot be used to test explanatory
hypotheses. The following example is adapted from Phil-
lips’s (1973) illustration. The Bayesian emphasis on the
prior probability is antithetical to objectivity.

Suppose that a newspaper editor, E, would endorse the
centre party in the coming election when it is preferred by
75% of the prospective voters polled. Editor E commissions
polls about the impending election to determine if the
criterion for endorsing the centre party is met. Columns 1
through 5 in Table 14 represent 5 successive polls con-
ducted. Entries in the “Prior Probability” rows represent
Editor E’s prior degrees of belief in the three parties
winning the election before the polling period specified by
the column number. Specifically, Editor E assigns prior
probabilities of .50, .60, and .40 to the left-wing, centre, and
right-wing parties, respectively, before the first poll (see the
“prior probability” entries in Column 1 in Table 14). The
entry in the cell intersecting a column and the “evidence”
row represents the poll result about the centre party in the
poll in question. In other words, the percentages of people
polled who chose the centre party are 30, 38, 45, 55, and 50
in Periods 1 through 5, respectively.

The “likelihood of evidence” is the probability of the
evidence (e.g., 30% of those polled favor the centre party) if
the centre party actually wins the election (viz., .35). As may
be seen from the “prior probability 3 likelihood” and
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Table 14. The accumulation of data and the conversion of the prior probability (Prior DOB) into its corresponding posterior
probability at successive research stages

Poll-data inspection period

1 2 3 4 5

Prior probability HL .50 .36 .31 .27 [.27]
HC .60 .40 .44 .59 [.59]
HR .40 .32 .24 .14 [.14]

Evidence 30% 38% 45% 55% [50%]
Likelihood1 of evidence HL .38 .38 .40 .30 [.40]

HC .35 .50 .60 .75 [.60]
HR .32 .35 .25 .35 [.25]

Prior probability 3 likelihood HL .19 .14 .12 .08 [.11]
HC .21 .20 .26 .44 [.35]
HR .13 .11 .06 .05 [.04]

Posterior probability HL
.19
.53 

5 .36
.14
.45 

5 .31
.12
.44 

5 .27
.08
.57 

5 .18 [.11
.50 

5 .22]
HC

.21
.53 

5 .40
.20
.45 

5 .44
.26
.44 

5 .59
.44
.57 

5 .77 [.35
.50 

5 .70]
HR

.13
.53 

5 .32
.11
.45 

5 .24
.06
.44 

5 .14
.05
.57 

5 .09 [.04
.50 

5 .08]
HL 5 The left-wing party will form the next government. [H7-1]
HC 5 The centre party will form the next government. [H7-2]
HR 5 The right-wing party will form the next government. [H7-3]
Evidence 5 The percentage of voters polled indicated a preference for the centre party in the present example.

1. Likelihood of evidence 5 The probabilty of the evidence, given that HC (HL or HR) is true.

“posterior probability” rows, the posterior probability is
given by the Bayesian theorem represented by Equation 5:

Posterior Probability 5
Prior Probability 3 Likelihood of Evidence

Sum of All (Prior Probability 3 Likelihood of Evidence)
(Eq. 5)

Editor E’s mode of decision-making is called the “sequen-
tial sampling procedure” (Phillips 1973, p. 66) because of
the following characteristics of the data-collection proce-
dure. First, evidential information is gathered in stages.
Second, the status of the evidence is examined at the end of
every stage (e.g., a percentage in Table 7.1 in my book).
Third, the evidence collected in successive stages is accu-
mulated in the following way: the posterior probability of
any stage serves as the prior probability of its immediately
succeeding stage. Fourth, the data collection procedure is
self-terminating in the sense that it stops when the posterior
degree of belief assumes a certain value.

It is important to emphasize that these four sequential
sampling features are not found in a typical experiment
(e.g., the kernel-negative experiment described above).
Moreover, Phillips’s (1973) “sequential sampling proce-
dure” characterization does not reflect four other important
features of the Bayesian approach. For ease of exposition,
these four additional features will be called the “reflexive”
features of the Bayesian data collection procedure.

First, none of the hypotheses is proposed to explain a
phenomenon that invites the investigation. Instead, they
are hypotheses about an uncertain event in the future. This
is unlike the explanatory substantive hypothesis depicted in
Table 1. Second, the Bayesian analysis is not about the truth

of hypotheses at all. Editor E does not collect data to accept
or reject any of the hypotheses (e.g., HC). Rather, Editor E
is interested in the “probabilification” of the hypothesis
(Earman 1992, p. 79). Hence, the reasoning shown in Table
3 or 4 cannot be carried out in the Bayesian approach.

Third, the procedure is reflexive in the sense that the
termination of the data collection procedure depends fortu-
itously on when the periodic data inspection is carried out.
Had the fourth inspection been delayed until Inspection 5,
the evidence would be 50% instead of 55%. (Hence, the
“prior probability” entries in Column 4 and the “likelihood
of evidence” entries in Column 3 are duplicated in Column
5.) In such an event, the posterior probability for HC is only
.70, which is not sufficient for Editor E to stop the polling.
On the other hand, the Bayesian sequential sampling is also
open-ended. Specifically, the poll does not stop after the
third inspection because the posterior probability (viz., .59
in Table 14) is smaller than the one desired by Editor E
(viz., .75). The Bayesian modus operandi is best summa-
rized as follows:

The scientist can design an experiment to enable him to collect
data bearing on certain hypotheses which are in question, and as
he gathers evidence he can stop from time to time to see if his
current posterior opinions, determined by applying Bayes’
theorem, are sufficiently extreme to justify stopping the experi-
ment. (Phillips 1973, p. 66) (Quote 4)

A concomitant feature of the reflexivity and open-
endedness found in the Bayesian methodology is that the
size of the data set is ill defined. It is determined fortu-
itously by the data collection procedure.

Fourth, the decision to stop data collection is made on
the basis of a criterion not related to what is said in the
hypothesis. Note that HC is the hypothesis that the centre
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party will form the next government. At the same time,
Editor E’s decision criterion is not the truth of HC, but how
certain Editor E is of HC. That is, whether or not the centre
party actually forms the next government has no bearing on
the reason why the poll is conducted. It is also for this
reason that Bayesians do not (and cannot) assess their data
with reference to a well-defined criterion in a way indepen-
dent of the prior probability. Consequently, Bayesians do
not talk about objectivity because there is no objective
entity or event against which Editor E’s decision may be
assessed.

In contrast to the third and fourth reflexive features of
the Bayesian sequential sampling procedure, experimental
psychologists do not treat their data in such a chance-
dependent way. Instead, the size of the data set in experi-
mental psychology is determined before data are collected.
That is, what is said in Quote 4 is the exact opposite of what
experimental psychologists would (or should) do. Specifi-
cally, experimenters adhere to their experimental plans, in
which are stated, among other things, (a) the number of
subjects, (b) the number of sessions a subject has to
undergo, and (c) the number of trials per session. There is
nothing chance dependent about the size of the data set.
Moreover, the experimenter has to assess the consistency
between the phenomenon and the substantive hypothesis,
as well as that between the experimental prescription and
the data. In other words, objectivity is not only possible, it is
important in experimental psychology.

In short, the data collection procedure congenial to the
Bayesian analysis is not appropriate for most psychological
research. At the same time, the Bayesian hypothesis is not a
prospective explanation of a phenomenon that exists be-
fore, as well as independently of, the data collection proce-
dure. The reflexive dependence of the Bayesian hypothesis
on the data collection procedure is responsible for the
Bayesian disregard of objectivity. Consequently, the appli-
cability of the Bayesian method to psychological research in
general, and theory-corroboration experiments in particu-
lar, is questionable. The tenability of explanatory hypoth-
eses cannot be ascertained by appealing to the researchers’
subjective degrees of belief if the phenomenon to be
explained exists prior to, as well as independently of, the
data collection exercise.

37. Methodological criticisms in disguise

It has been mentioned that the role of the associated
probability, p, in NHSTP is questioned by critics. Specifi-
cally, although p is not an index of the replicability of the
result, the researcher tends to stop further investigation
after a significant result (Bakan 1966). Critics find this
wanting; they argue that researchers should conduct repli-
cation studies. This is important to Bayesians because their
objective of empirical research is to revise the prior proba-
bility in light of new data. It is also necessary to conduct
replication studies if one subscribes to the meta-analytic
approach (Glass et al. 1981; Hunter & Schmidt 1990;
Rosenthal 1984). Moreover, it has also been said that
NHSTP results may be disambiguated with replication
studies (Thompson 1996).

These arguments for conducting replication studies indi-
cate that the real concern implicit in some criticisms of
NHSTP has nothing to do with it being a statistical proce-
dure. The criticisms are methodological critiques in dis-

guise (inadvertently, perhaps). For this reason, another
argument in support of NHSTP may be offered by showing
that replication is not sufficient for theory corroboration.
Worse still, successful replications may actually be mislead-
ing. Instead, the tenability of an explanatory substantive
hypothesis is ascertained with a series of converging opera-
tions (Garner et al. 1956). NHSTP is used in every study in
the series.

38. How important is replicability?

Several reasons may explain why replicability has captured
critics’ attention favorably. First, there are the ambiguity-
anomaly criticisms of NHSTP, the collective point of which
is that statistical significance may be reached fortuitously.
There is the additional assumption that a fortuitous result is
unlikely to be replicated. However, these criticisms can be
answered, as may be recalled from “the sample size-
significance dependence problem revisited” discussion in
section 15. Be that as it may, some critics see another source
of ambiguity.

They emphasize the arbitrariness of the choice of the a
level. Specifically, setting a 5 .05 is a convention. The
question is raised as to why a is not set at the .10, .07, .01, or
.005 level. More importantly, a result significant at the .05
level may not be significant at the .01 level (e.g., when the
calculated t is 2.4 for a 1-tailed test with df 5 18). By the
same token, a result not significant at the .05 level may be
significant at the .1 level (e.g., when the calculated t is 1.5
for a 1-tailed testwith df 5 18). In short, statistical signifi-
cance may simply be the fortuitous choice of the a level.

This “fortuitous choice of a” criticism of NHSTP seems
like a demand for an absolute proof for the substantive
hypothesis. This demand cannot be met on logical grounds
because it is impossible to prove any theory (i.e., substanti-
ate any theoretical claim) with absolute certainty. It is not a
limitation brought about by using NHSTP. It is the result of
having to affirm the consequent of the major premises of
the conditional syllogistic arguments implicated (see Table
3). It so happens that deductive logic does not allow
drawing a definite conclusion about the antecedent of the
major premise by affirming its consequence.

There is another reason why the “fortuitous choice of a”
criticism cannot be answered logically: the reality of multi-
ple explanations for any phenomenon. To ask for absolute
certainty under such circumstances is to require the elimi-
nation of all possible alternative explanations. Because this
is impossible, the best one can do is to draw a tentative
conclusion with the help of the inductive principle underly-
ing the experimental design (see Table 5). The important
point is that the criticism that the experimental result does
not provide the conclusive evidential support should not be
directed to NHSTP at all because it is not a difficulty
brought into the research procedure because NHSTP is
used.

At the same time, it is possible to show that the “fortu-
itous choice of a” criticism is itself misguided. The criticism
should be considered with reference to the fact that the a
level is determined before data collection. That is, the
decision is made before data collection that the level of
strictness for rejecting H0 stipulated by a is sufficient for
the research in question. Consequently, subsequent deci-
sions about the experimental task, experimental design,
number of subjects, amount of training given to the sub-
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jects, number of test sessions, number of trials per session,
and the like are all made with the understanding that the
chosen a level is sufficiently strict. Had a more stringent a
level been deemed necessary, the other features of the
experiment would have been different. Moreover, the “for-
tuitous choice of a” criticism is vacuous because critics can
always stipulate a stricter criterion (viz., .001, .0005, etc.)
after the completion of data collection.

Suppose that the statistical significance of the result is
deemed not fortuitous and that the a level is accepted as
adequate. Critics may still point out that replication studies
are necessary because there is still the .05 probability of
committing the Type I error. What does it mean to have
rejected H0 incorrectly? It means attributing the observed
effect (in the technical sense of the word) to the experimen-
tal manipulation when, in fact, another variable may be
used to explain the result. This is another way of saying that
the experimental manipulation may have been confounded
with an unknown variable. Seen in this light, the “fortuitous
choice of a” critique is a design issue, not a difficulty inherit
in NHSTP. It is important for the present discussion to note
that this difficulty cannot be eliminated by conducting
replication studies because it is a prerequisite of a replica-
tion study that data collection conditions must duplicate
those of the original study. To the extent that this duplica-
tion is successful, the original confounding may still occur.
In other words, absolute certainty about the substantive
hypothesis cannot be established by successful replications.
This state of affairs calls into question the necessity of
conducting replication studies.

To recapitulate, critics’ insistence on conducting replica-
tion studies seems to be motivated by (a) the wish to
establish the tenability of the substantive hypothesis with
absolute certainty and (b) the desire to disambiguate the
NHSTP outcome. In defence of NHSTP, it is suggested
that these concerns are methodological, not statistical. For
example, some critics suggest that researchers should re-
port the associated probabilities, p, of individual studies so
that meta-analysis can be carried out.

It can be concluded that, although replicability may be
the necessary condition, it is not the sufficient condition. A
more positive defence of NHSTP consists of showing that
(a) the “fortuitous choice of a” criticism cannot be used to
justify the meta-analytic approach, (b) cognitive psycholo-
gists ascertain a substantive hypothesis by eliminating alter-
native substantive hypotheses and unknown confounding
variables with converging operations, and (c) NHSTP is
used in all such attempts. This positive defence may be
presented in the context of studying the iconic store experi-
mentally.

39. The “perceive more than can be recalled”
phenomenon

Suppose that you take a quick glance at the rearview mirror
while driving. You can report only a few things despite the
feeling that you have seen more. This not uncommon
experience is the phenomenon to be explained by the iconic
store (Neisser 1967; Sperling 1960). The iconic store is said
to have a relatively large storage capacity and a very short
retention interval. Forgetting from the iconic store occurs
because of information decay. Lastly, only sensory un-
processed information is available in the iconic store.

Suppose that there are 12 studies of the iconic store (see
the “Study” column in Table 15). Although the result is
significant in eight studies, it is nonsignificant in Studies 4,
5, 9, and 12 (see the “p of Test Statistic” column). Among
the 8 studies with statistically significant results, the p
values of Studies 6 and 8 are very close to .05, whereas that
of Study 3 is exactly .05. Although the result is nonsignifi-
cant in Study 5, the p value does not differ by much from
.05. This state of affairs may reinforce the “fortuitous choice
of a” criticism.

40. Meta-analysis and its difficulties

Some critics suggest that the p values of the test statistic
may be used to obtain a combined Z or that effect-size
estimates may be used to obtain the combined effect size. A
statement about the overall statistical significance is then
made on the basis of the combined Z, called “combined
significance level” (Harris & Rosenthal 1985). That is, the
p, or effect-size, values from individual studies are treated
as raw data (hence “raw data” in Table 15’s title) and
subjected to statistical analysis at a higher level of abstrac-
tion. This more abstract analysis is called meta-analysis or
the “analysis of analysis” (Glass 1976; 1978; Glass & Kliegl
1983; Glass et al. 1981; Harris & Rosenthal 1985; Schmidt
1992).

Recently, meta-analysis has been promoted as a theory-
corroboration tool, in addition to being an antidote for
rectifying the harm done by using NHSTP (Cooper 1979;
Cooper & Rosenthal 1980; Schmidt 1996). Specifically, it is
an important meta-analytic assumption that knowledge
grows with the accumulation of research results. The binary
nature of the NHSTP outcome is deemed incompatible
with the incremental growth of knowledge. This difficulty is
amplified by the “fortuitous choice of a”criticism.

Some meta-theoretical issues must be settled before
meta-analysis can be accepted as a valid theory-
corroboration tool. They are: (a) the selection, (b) a lack
of independence, (c) the unjustifiable disregard for re-
search quality, and (d) problems brought about by a lack
of commensurability among the to-be-aggregated studies
(see Chow 1987b; 1987c; Cook & Leviton 1980; Eysenck
1978; Gallo 1978; Leviton & Cook 1981; Mintz 1983;
Rachman & Wilson 1980; Sohn 1980; and Wilson &
Rachman 1983). Of interest here is the problem of a lack
of commensurability among the studies included in the
meta-analysis.

To use the combined Z or effect size of the 12 studies in
Table 15 to ascertain the tenability of the iconic store is to
assume that it is legitimate to combine the data from the 12
experiments and to use them in toto. This assumption must
be questioned in view of the fact that different independent
variables are used (see the “Independent variable” column
in Table 15). At the same time, different dependent vari-
ables are implicated. For example, the dependent variables
may be the number of items available in one study; in
another study they could be the correct reaction times, or
the number or types of error made. How is it meaningful to
take the average of the effect measured in terms of correct
reaction times and that measured in terms of the frequen-
cies of different kinds of errors? What would the average
mean at the conceptual level? In other words, to combine
the information from qualitatively different experiments is
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Table 15. The incommensurability difficulty of meta-analysis illustrated with fictitious “raw data”

Study
p of test
statistic Effect size1 Independent variable

Property or function of the iconic
store studied

1 .021* 0.7 ISI2 Rate of decay
2 .001* 0.3 Type of task Relatively large storage capacity
3 .050* 0.5 Number of

concurrent tasks
Independence from the short-term
store

4 .110 0.11 What to recall Independence of location and
identity information

5 .068 0.17 Stimulus material Nonassociative information
6 .049* 0.4 Type of task Visible persistence
7 .02* 1.5 Type of material Unprocessed information
8 .046* 1 Time of probe

presentation
Select before processing

9 .070 0.06 ISI Visible persistence
10 .04* 0.18 Stimulus duration Information registration rate
11 .038* 0.2 Stimulus duration

within a fixed SOA3
Information registration rate

12 .066 0.29 Type of material No identity information
Combined Z Combined

effect size

*denoted significance at the 0.05 level

1. J. Cohen’s (1987) d 5 
(uE 2 uc )

sE
2. “ISI” refers to the interstimulus interval, the interval between the offset of the stimulus and the onset of the partial-report tone (see

N. 2 in Ch. 5)
3. “SOA” refers to stimulus-onset asynchrony, the interval between the onset of the stimulus and the onset of the mask.

like the illegal practice of mixing apples and oranges (Cook
& Leviton 1980; Mintz 1983; Presby 1978).

Glass et al. (1981) answer the “apples and oranges”
reservation by saying that apples and oranges are both
fruits. They argue that things that are incommensurable at
one level of discourse become commensurable if they are
subsumed in a higher-order category. However, this is not a
good answer. Specifically, the outcome of Study A may be
caused by the acidity of oranges, which is not a property
common to all fruits. At the same time, the texture of apples
may be the reason for the outcome of Study B, and the
texture is also not a property common to all fruits. That is to
say, meta-analysts have not provided a good theoretical
justification for ignoring the qualitative differences among
the diverse sets of research data.

41. Converging operations

It is an meta-analytic assumption that our understanding of
an issue improves when more data are accumulated and
used in toto. Moreover, merely knowing the significance or
nonsignificance of individual studies is not suitable for such
a data-accumulation exercise. However, the “apples and
oranges” difficulty shows that the meta-analytic argument is
debatable because “accumulate” is used in a quantitative
and mechanical sense. The disregard for the qualitative
differences among various studies prevents meta-analysts
from seeing that knowledge evolves in a far from straight-
forward fashion. There are a lot of trials and errors at the
conceptual level. NHSTP plays an important role in every
one of these steps. This view (an alternative to the meta-

analytic one) may also be used to illustrate (a) the rationale
of conducting converging operations, (b) how the difficulty
of perpetuating confounding variables in replication studies
may be minimized, and (c) the difficulty caused by the
Bayesian insistence on interpreting current data with refer-
ence to prior probability.

42. The rationale of converging operations

The relations among the quartet of hypotheses implicated
in the theory-corroboration experiment depicted in Table 1
become more complicated as the investigation of the sub-
stantive hypothesis progresses. Successive rows of Table 16
represent successive stages of the theory-corroboration
endeavor. The series of studies need not (and often is not)
undertaken by the same experimenter.

The only requirement for the tenability of the iconic
store before any data collection is that what is attributed
to the iconic store (i.e., what is said in H) be consistent with
P, the “perceive more than can be recalled” phenomenon
(see the “Before experimentation” row in Table 16). Phe-
nomenon P is the prior data in the sense that it exists before
the substantive hypothesis. There is no evidential data for
the iconic before the first experiment because Phenome-
non P itself cannot be used as the evidence (hence, there is
no entry in the cell defined by the intersection of the “Data”
column and the “Before Experimentation” row). To use the
original phenomenon for such a purpose is to commit the
circularity error.

In the absence of any evidential data, the implication of
the first study (viz., I1) has to be consistent with P, in
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Table 16. The phenomenon-hypothesis-implication-data (P-H-I-D) consistency at different research stages
of the substantive hypothesis, H

Experiment Phenomenon/prior data Hypothesis Implication Data
P-H-I-D

consistency

Before Experimentation P H Yes
1 P H I1 D1 Yes
2 P 1 D1 H I2 D2 Yes
3 P 1 D1 1 D2 H 13 D3 Yes
. . . H . . . . . . Yes
. . . H . . . . . . Yes
n 2 1 P 1D1 . . . 1 Dn22 H In21 Dn21 Yes
n P 1 D1 1 . . . Dn21 H In Dn Yes
. . . H . . . . . . Yes
t P 1 D1 1 . . . Dt21 H It Dt Yes

addition to being a theoretical derivation from H. The data
from this study (i.e., D1) are compared to what is said in I1.
Necessary for the tenability of H is that D1 be consistent
with I1. Hence, the emphasis is on the phenomenon-
hypothesis-implication-data (P-H-I-D) consistency in Ta-
ble 16. This is the basis of objectivity, something ignored in
the Bayesian and meta-analytic approaches.

The data-implication consistency (i.e., the consistency
between Di and Ii, where i represents the row number in
Table 16) is ascertained with NHSTP, as described in Tables
2 and 3 (or 4, as the case may be). Only a binary decision is
required to initiate the chain of deductive reasoning de-
picted in Table 3 or 4. Hence, the binary nature of the
NHSTP decision is adequate for this purpose. Why do
critics consider the binary decision incompatible with the
incremental growth of knowledge? One reason is that, as
has been suggested earlier, critics identify NHSTP with the
theory-corroboration process itself. The other reason is that
there are two ways to look at the information accumulated,
as well as how it is used.

Meta-analysts accumulate data via the test statistics of
individual studies (see the “p of Test statistic” or “Effect
size” column in Table 15). Bayesians accumulate raw data
via the role played by the prior probability in the Bayesian
theorem (see Table 14). In both cases, all data accumulated
to date are used as the evidence. In contrast, only data
collected in the current study are used to ascertain the
tenability of the substantive hypothesis (e.g., as may be seen
from Table 16, only Dn is used to assess the tenability of In
in Study n; see also Tables 2, 3, and 4). More importantly,
research data obtained in previous studies have no eviden-
tial role in the current study. Instead, conclusions drawn
from earlier data are used in cognitive psychology as theo-
retical constraints on the “If H, then Implication” deriva-
tion. For example, Implication In has to be consistent with P
1 D1 1 . . . Dn-1 (see Row [n - 1] of Table 16).

Each of the implications in Table 16 is a criterion of
rejection for the substantive hypothesis, H, in the following
sense. H has to be rejected if the data (e.g., Dn) are
inconsistent with what is stipulated in any study (viz., In in
the case of Study n ). In more concrete terms, studies of the
iconic store are attempts to substantiate the theoretical
properties that have been attributed to the iconic store (viz.,
those tabulated in the “Property or function of the iconic

store studied” column of Table 15). For example, a fast rate
of decay has been attributed to the information residing in
the iconic store. An implication of this theoretical property
is that performance on Sperling’s (1960) partial-report task
should decline rapidly within 250 to 500 msec when the
interstimulus interval (ISI) is manipulated. The postulation
of the iconic store would be untenable if this theoretical
prescription were not demonstrated.

It follows that the “Independent variable” and “Property
or function of the iconic store studied” columns in Table 15
jointly represent attempts to falsify the theory of the iconic
store from various angles (viz., by testing the various theo-
retical properties of the iconic store with different experi-
mental tasks in diverse settings by different experimenters).
Suppose all these falsification attempts fail. That means
that, as the research progresses, more and more of its
theoretical properties are substantiated in qualitatively dif-
ferent situations. Hence, these various studies may be said
to converge on the tenability of the iconic store. Re-
searchers’ confidence in the iconic store as a theoretical
mechanism increases as more and more of these falsifica-
tion attempts fail. In short, the series of experiments collec-
tively form the converging operations used in validating the
iconic store.

The studies depicted in Table 15 are not replication
studies because they differ greatly among themselves. Sup-
pose that critics question the statistically significant result
of Study 8. As has been suggested earlier, this reservation is
mostly a question about data interpretation. One source of
ambiguity is the presence of an unknown variable that has
varied systematically with the research manipulation. That
is, the data may do something other than ascertaining the
property of the iconic store. This ambiguity cannot be
eliminated by replicating the experiment because every
time the original study is repeated, the confounding vari-
able would also occur.

The situation is very different in the case of converging
operations. The theoretical property investigated in Study 4
has a different implication in another setting (hence, Study
8). Although Studies 4 and 8 are about the same theoretical
property of the iconic store, radically different tasks and
experimental manipulations are involved. Hence, in gen-
eral terms, it is less likely that the same confounding
variable is found in all of the studies when radically differ-
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ent data-collection conditions are used in the series of
converging operations. This is the reason why conducting
converging operations is more satisfactory than conducting
replication studies.

43. Objectivity and the Bayesian prior probability

Bayesians bemoan the fact that non-Bayesian researchers
do not take into account the prior probability of the hypoth-
esis when research conclusions are drawn. This Bayesian
point may be illustrated with column 1 of Table 14. The
evidence is that 30% of the voters polled indicate a prefer-
ence for the centre party (i.e., HC). The likelihoods are .38,
.35, and .32 for HL, HC, and HR, respectively. That is, one
may argue that the evidence is more favorable to HL than to
HC if one ignores the impact of the prior probabilities of the
three hypotheses. Bayesians would point to the fact that the
posterior probabilities are .36, .40, and .32, respectively for
HL, HC, and HR. In Phillips’s (1973) words:

Whether or not the [poll result] tells the [editor] something
about the [election], but the information conveyed by the [poll]
is far less than that shown in the prior probabilities. In this case
the prior probabilities swamp out the information in the [poll],
so that the posterior probabilities are determined more by the
priors than by the likelihoods. The extra information given by
the [poll] does not change the prior probabilities enough to
warrant [changing the editor’s editorial decision]. (Phillips
1973, p.74, explications in parentheses added) (Quote 5)
The Bayesian treatment of the prior probability of the

hypothesis is the opposite of what experimental psycholo-
gists should accept. First, what does a higher posterior
probability mean? It means simply that Editor E has the
highest confidence in HC. However, this is not the same as
saying that HC is necessarily or inevitably true. Second,
Bayesians find “probabilification” satisfactory because they
treat their reflexive sequential sampling task as the proto-
type of all empirical research. Consequently, they do not
find it necessary to assess the data with reference to the
consistency between (a) the to-be-explained phenomenon
and the substantive hypothesis and (b) the experimental
prescription and the data.

There is a third reason why what is said in Quote 5 is
debatable. Do Bayesians mean to suggest that research
should be designed and data interpreted in ways deter-
mined by how the researcher feels about the hypothesis? Is
this not an invitation to inject biases into the research
processes? This is the opposite of what should be the case in
view of the rationale described in Tables 1, 2, 3, and 5.

Experimenters following the research rationale repre-
sented in Tables 1 and 16 always give the to-be-
corroborated hypothesis the benefit of the doubt. That is,
the derivation of the experimental hypothesis (and hence,
the design and execution of the experiment) is based on the
assumption that the substantive hypothesis is true. This
assumption is made even when the experimenter does not
like the hypothesis. Moreover, the statistical, experimental,
and theoretical conclusions are drawn with reference to the
rules described in Tables 2 and 3 (or 4). How the researcher
feels about the hypothesis or data has no role in the
statistical, inductive, or deductive reasoning. It is necessary
to consider the Bayesian methodology more judiciously.

44. Summary and conclusions

Not much is said in this defence about the criticism that
various aspects of NHSTP are often misunderstood (e.g.,

the meaning of p, identifying a as an index of replicability,
etc.) for the simple reason that they are not difficulties
inherent in NHSTP. Instead, the emphases in this defence
are on some meta-theoretical assertions about NHSTP. The
most notable one is the commonly accepted view that the
null hypothesis is never true. This view is problematic
because the null hypothesis is not used in NHSTP as a
categorical proposition descriptive of the world.

The null hypothesis appears in two different conditional
propositions. First, it is the implication of the hypothesis
that chance influences are responsible for the experimental
result. What is said in the null hypothesis is (and should be)
true if the control and experimental conditions are set up
properly. Second, the null hypothesis is used to stipulate the
lone sampling distribution to be used in making the statisti-
cal decision about chance influences. This utility of the null
hypothesis shows that NHSTP is often misrepresented at
the graphical level. More important, it shows that statistical
significance and effect size (or statistical power ) belong to
different levels of abstraction (viz., the level of sampling
distribution versus the level of raw scores).

The present defence of NHSTP is conducted in the
context of theory corroboration. It is argued that NHSTP is
not theory corroboration. However, NHSTP does provide
the objective means to exclude chance influences as an
explanation of research data. This statistical decision pro-
vides the minor premise for the first of three embedding
syllogisms. The asymmetry between the modus tollens and
affirming the consequent arguments can be tentatively
resolved by appealing to an inductive rule underlying the
experimental design. These considerations lead to the con-
clusion that many criticisms of NHSTP are actually ques-
tions about the inductive conclusion validity of the research.

The putative importance of the effect size is called into
question by showing that the size of the effect is not an index
of the evidential support for the substantive hypothesis
offered by the data. Nor can the effect size, by itself, be the
index of the practical importance of the research result in
the case of the utilitarian experiment. It is made clear that
statistics and practical validity belong to different domains.

Some difficulties with power analysis are illustrated by
the affinity between NHSTP and TSD envisaged in power
analysis. A notable example is that, being a conditional
probability, statistical power cannot be the probability of
obtaining statistical significance. Because there is a Baye-
sian overtone in power analysis, such analysis can be ques-
tioned to the extent that the Bayesian assumptions about
research methodology are debatable. At best, the Bayesian
approach has a very limited applicability in psychological
research because it is applicable only to the sequential
sampling procedure. It cannot be used to investigate ex-
planatory hypotheses.

In short, what motivates some criticisms of NHSTP may
be understood by the fact that although statistical signifi-
cance provides a rational basis for rejecting chance influ-
ences as an explanation of data, it is not informative as to
what the nonchance factor is. Moreover, statistical signifi-
cance says nothing about the real-life importance of the
data. It is argued in this defence that the real issue concerns
why NHSTP is expected to furnish such information, given
that NHSTP is a statistical procedure. What also has to be
said is that the alternative numerical indices suggested by
critics of NHSTP (viz., effect size and confidence interval)
are also incapable of pinpointing the nonchance factor
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responsible for the research result. The point is simply that
statistics and practical importance belong to two different
domains. Why should the tools from one domain be used to
settle questions belonging to another domain?

Be that as it may, there is a positive way to look at the
criticisms of NHSTP. The critiques are attempts to chal-
lenge NHSTP users to rationalize the research procedure
in general, and the role of NHSTP in such a procedure in
particular. The present defence of NHSTP is one such
attempt. This account of NHSTP is not expected to be the
final one. Nonetheless, it will fulfill its purpose if it serves as
the basis for further exploration of the issues raised in the
course of the present argument. It is hoped that a coherent
view of NHSTP pertinent to empirical research will emerge
from the ensuing discussion.
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The null-hypothesis significance-test
procedure: Can’t live with it, can’t live
without it

Charles F. Blaich
Department of Psychology, Wabash College, Crawfordsville, IN 47933
blaichc@wabash.edu

Abstract: If the NHSTP procedure is essential for controlling for chance,
why is there little, if any, discussion of the nature of chance by Chow and
other advocates of the procedure. Also, many criticisms that Chow takes to
be aimed against the NHSTP (null-hypothesis significance-test) proce-
dure are actually directed against the kind of theory that is tested by the
procedure.

Social scientists, especially psychologists, seem to be in the grip of
a split personality, at least statistically speaking. On the one hand,
there appears to be an uprising against statistical inference (e.g.,
Bakan 1966; Carver 1978; Cohen 1994; Hunter 1997; Loftus 1996;
Morrison & Henkel 1970; Rozeboom 1960). On the other, despite
token changes in the content of most texts, the null-hypothesis
significance-test procedure (NHSTP) has been taught more or
less the same way for the last 40 years.

Chow’s book offers one of the few recent defenses of this
procedure. Chow advances two basic arguments. First, that the
NHSTP’s limited but important function is to control for the
possibility that chance factors alone could plausibly account for
our data. Second, that many of the faults that have been attributed
to the NHSTP, for example the fact that it does not provide
information about effect size or the practical importance of a
finding, are misdirected, because the procedure is not designed to
accomplish the tasks the critics want done.

Chow’s first argument repeats what a number of critics of the
NHSTP have already stated: that too often researchers interpret
the phrase “statistically significant” to imply that a study is of
theoretical or practical “significance” (Guttman 1977; Shaver
1993; Thompson 1996). One reason, in my view, that many
researchers have a hard time sticking to the strict meaning of the
NHSTP is, despite the effort they expend learning different

permutations of the NHSTP, they do not view chance as a
plausible alternative explanation. Indeed, social scientists appear
to have a curious love-hate relationship with chance: they love to
reject the idea that chance explains their data (i.e., get a statis-
tically significant result), but they are reluctant to discuss explicitly
the chance processes they are so bent on rejecting. Apart from
making vague references to sampling error, few textbooks de-
scribe the chance events modeled by the NHSTP in different
research designs (See Ramsey & Schafer 1997 for a recent
exception). Nor is there any discussion of whether it is appropriate
to use the same inferential procedures (a) to analyze designs in
which we randomly sample individuals from existing populations,
(b) to randomly assign subjects to different conditions, or (c) when
there is neither random assignment nor random sampling. Chow’s
book continues this tradition with virtually no discussion of chance
processes.

One sometimes wonders how many researchers actually make
the connection between the NHSTP and the real events that occur
in their research (Tversky & Kahneman 1971). Too often the same
researchers who apply the most stringent post hoc tests to control
experiment-wise Type I error, turn around and repeatedly run
replications of the same study “until it works” – that is, until the
results are statistically significant. This is not a criticism of the
NHSTP so much as it is a question of whether or not social
scientists are philosophically committed to the idea that chance
events affect our data. If they are not, then using the NHSTP is
more of a ritual than an active effort to control for chance (Shaver
1993).

Chow also argues that the inability of the NHSTP to provide
direct estimates of effect size is not important for theoretical
research because the “exact magnitude of the effect plays no role
in the rationale of theory corroboration” (Chow 1996, p. 96). Chow
does allow that estimating effect size and the practical utility of a
finding are useful for utilitarian research, but it is not clear that
effect size and statistical significance can be this neatly separated.
Effect size plays an important role in determining whether or not a
statistical test is significant, and therefore whether or not a theory
is corroborated. Nonetheless, there is a rationale to Chow’s argu-
ment. According to Chow, theories lead to qualitative, “more, less,
or not the same” hypotheses about the pattern of data. For
example, the theoretical assertion that the linguistic competence
of native speakers of English is an analog of the transformational
grammar leads to the research hypothesis that it should be more
difficult to process one kind of sentence than another (Chow 1996,
p. 69). This in turn leads to a specific prediction about which
sentences should take longer to process. Of course, the theory
does not lead us to a more specific prediction of how much more
time one sentence should take to process than another.

Chow’s view of the qualitative prediction that a theory should
produce (i.e., this group should be more or less than that group, or
these groups should not be the same) is certainly consistent with
the way that theory corroboration has been practiced in the social
sciences. It is also clear that the NHSTP fits nicely with qualitative
hypotheses. We want to predict that the mean of one group should
be different from another, and we want to exclude the possibility
that the “difference” is the effect of chance.

It might be useful, however, to view recent arguments in favor of
emphasizing the use of confidence intervals, effect sizes, power
analysis, and meta analyses not as critiques of the NHSTP but as
tentative steps towards establishing a tradition for both theoretical
and utilitarian research, in which we specifically predict the
magnitude of the relationships among our variables. I don’t want
to fall prey to “physics envy,” but the assertion “F 5 ma” seems
both more satisfying and more risky than the prediction that there
is a positive relationship between force, mass, and acceleration.
Even if point predictions are out of reach, theories which generate
predictions of “a little more” or “a lot less” would enrich our field
(See Tukey 1969, p. 86 for discussion on this point).

Chow’s book shows that the controversy surrounding the
NHSTP will continue. Unfortunately, with a few exceptions, the
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important points raised by critics of this procedure have not
changed the way that editors and reviewers evaluate research.
Although the NHSTP is, as Chow argues, just another control
procedure, like random assignment or double-blind data collec-
tion, it differs in one critical respect. We cannot apply it until after
data are collected. In a world in which only significant results are
published, this makes researchers into gamblers, whose careers
depend on the outcome of the chance events they are attempting
to control for. It is not surprising, therefore, that the NHSTP
continues to be practiced in a way that most editors and reviewers
demand.
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On the position of statistical significance in
the epistemology of experimental science

Charles E. Boklage
Department of Pediatrics, East Carolina University, Laboratory of Behavioral
and Developmental Genetics, Greenville, NC 27858-4354
boklage@brody.med.ecu.edu

Abstract: Although various statistical measures may have other valid uses,
the single purpose served by statistical significance testing in the episte-
mology of experimental science is as a peremptory rebuttal of one
potential alternative interpretation of the data.

When I used bacterial viruses instead of humans to study develop-
mental genetics, we routinely sampled five hundred million lives
in a pipette. Most experimental answers came from differences
among containers in the numbers of those lives. A two-fold
difference required a retest against having added a limiting factor
twice. A ten-fold difference raised prospects of miscounted titra-
tion dilutions. We repeated each experiment with appropriate
variations to satisfy ourselves that we knew how the system came
to behave as it did. When we were confident we could reproduce
the answer, we did it again, for pretty results for publication. We
knew every tool we used was imperfect: I made a personal
experimental study of how best to handle pipettes in making
dilutions, to appreciate that source of error intimately and mini-
mize it. We could make the risk of refutation approach negligible,
and our worst-case outcome was the prospect of someone else
producing a reasonable alternative explanation for our results.
One time, a reviewer asked for statistical confirmation of the
difference between the lines in a graph showing how different
viruses were affected by a particular manipulation. We made the
calculations necessary to answer the silly question: the prospect
that the lines differed only by chance in sampling was orders of
magnitude below any reasonable preset criterion of negligibility
we could have imagined.

In questions of human development, experimental control is of
a much different character, and samples are orders of magnitude
smaller. A reasonable alternative explanation is still my worst case,
and the interpretation that the results may be due to chance alone
can indeed be a reasonable alternative. In the biomedical litera-
ture, many editorial reviewers expect statistical tests in most
submissions. Still, I have acted as if I thought everyone knows
significance testing serves only to protect research results from
that one alternative interpretation. The rest of what we really need
from a good piece of research will always have to come from the
experimental logic and the underlying chain of evidence.

These truths are not, I’m afraid, self-evident. There was a time
when I did not yet know them, and a time before that when the
people who taught me did not yet know them. Chow’s answers are
cogent and thorough, and his book should be a help in teaching
statistical epistemology. It is not as easy as it might be to notice
what he has to say about the valid practical uses of the alternative

understandings he addresses. Perhaps that should be another
book.

Statistical significance testing was not meant
for weak corroborations of weaker theories

Fred L. Bookstein
Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109.
fred@brainmap.med.umich.edu

Abstract: Chow sets his version of statistical significance testing in an
impoverished context of “theory corroboration” that explicitly excludes
well-posed theories admitting of strong support by precise empirical
evidence. He demonstrates no scientific usefulness for the problematic
procedure he recommends instead. The important role played by signifi-
cance testing in today’s behavioral and brain sciences is wholly inconsistent
with the rhetoric he would enforce.

Chow’s book sets out a rhetoric of null-hypothesis significance-test
procedures (NHSTP) in the context of “theory corroboration” as a
style of behavioral research. The basic contention is set out clearly
on page 67: “The limited, but important, role of NHSTP in
empirical research is to supply the minor premiss required to start
the chain of embedding conditional syllogisms implicated in
theory corroboration.”

Yet this volume never gives examples of the empirical corrobo-
ration of any interesting or plausible theory. In fact, it contains no
empirical examples at all. Table by table, its “data” are pure
simulations or formularies (Tables 2.5, 2.6, 7.2) or frankly fictitious
(Tables 1.1, 5.1, 5.4, 5.5, 7.1, and 7.3). Had Chow access to
examples demonstrating the wisdom of his suggested rationale,
such as opposing theories (one of which ultimately came to
dominate based on the accumulation of appropriately couched
significance tests), surely he would have put them forward. From
the fact of their complete absence from the volume, one may infer
that there exists no such example: no empirical scientific practice
to which the author’s version of NHSTP is capable of making a
meaningful contribution.

This predicament is a direct consequence of Chow’s impov-
erished notion of “theory corroboration,” the activity that he insists
is the only proper context of significance-testing. For instance, this
fundamental misconstruction pervades the extensive verbal chart
(Table 5.2) contrasting “the agricultural (utilitarian) model” with
these “theory-corroboration experiments.” Entry after entry in the
theory-corroboration column reiterates the same unfortunate re-
duction of empirical inquiry to some sort of rarefied logical
exercise. The “impetus” is “to explain a phenomenon[,] indepen-
dent of data collection”; the subject matter is an “unobservable
hypothetical entity and its theoretical properties”; there is “no
closure to the investigation”; the question is “why” rather than
“how [much]”; the experimental hypothesis is “qualitatively differ-
ent from the . . . substantive hypothesis”; the experimental manipu-
lation and the dependent measure are each “different from the to-
be-explained phenomenon”; the effect is “the difference between
the means of two conditions.” Theories of which the corroboration
is hobbled by these rules could never be persuasively argued by
empirical evidence at all – Chow has designed a logic of
significance-testing perfectly specialized for theories that cannot
ever be tested in stronger ways.

But why would anyone pursue such “corroborations” when so
many superior forms of investigation come readily to hand? Most
of today’s most interesting theories of cognitive neuroscience can
be stated clearly enough to justify strenuous attempts at compel-
ling empirical support or refutation. Aspect by aspect, they contra-
vene all the characterizations from Chow’s table just quoted.
Every attempt is made to tie explanation and hypothesis to data
that are more and more explicitly measured and more and more
effectively visualized, so that ultimately the theory and the reliable
production of a strongly predictable empirical pattern amount to
the same thing.
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Let me illustrate using the theme of brain–behavior relations,
my principal research interest at present. The “impetus” of work
like mine is to discern and explain patterns in the empirical
association between channels of data recorded using different
instruments (e.g., an MR scanner and a questionnaire) on the
same subjects, perhaps a sample of schizophrenics. The theory is
that of “endophrenology”: there exist structural features of the
brain, perhaps including some malformations of the corpus cal-
losum, that are associated tightly enough with psychiatric symp-
toms to underwrite etiological hypotheses. There are no “hypo-
thetical entities” with “theoretical properties,” but instead reliable
measurements in each of two practical domains, neuroanatomy
and psychiatric diagnosis. The issue is not “why” but what predict-
able associations there are between the two domains, in this case
etiologic associations that hint equally at potential developmental
understandings and treatments. There was no “experiment,” if by
that one means an intentional intervention (e.g., to induce a case of
schizophrenia); in its place there is the excruciatingly careful
accumulation of data and its defense against all the familiar threats
to their validity – the validity of the data, mind you, not the theory.
The “effect” of interest in a typical study is not the sign of a
difference between two means but the demonstration of a distrib-
uted pattern, such as a dose–response relationship, a distinction of
shape, or a system of peaks of blood flow localized in space and
time. It is mainly from the values of regression coefficients like
these that the modern endophrenologist extracts his most exciting
aperçus into neurophysiology and neuropsychology. (See, for
instance, Bookstein 1997 or Bookstein et al. 1996.)

From the unsuitability of this rhetorical structure to the condi-
tions set out by Chow for the validity of NHSTP, one might infer
that statistical-significance tests play no role in this domain; but of
course they do. As in every other aspect of modern cognitive
neuroscience, the exploitation of NHSTP is ubiquitous. Its role,
however, is to accept a properly drawn null hypothesis, not to rule
it out. For in this domain, to affirm a theory is to say something
quantitative. One significance test might, for instance, assert the
low rank of a cross-covariance matrix, as in the method of Partial
Least Squares, and so sustain a claim of empirical simplicity for
some pattern of bivariate associations. Another might be con-
cerned with agreement between the spatial variation of the con-
trast between two averaged functional brain images and the
distribution expected on a Markov random field hypothesis, so
that one might be permitted to refer to that spatial field as “noise”
rather than further regional signal requiring further investigation.
A third and fourth test might sustain the claim that there is a shape
difference between groups in one part of the brain, but nowhere
else. This theory-laden area relies on NHSTP for rational scien-
tific discourse in all these ways, none of which seem to find any
resonance in either column (“agricultural model” and “theory
corroboration”) of Chow’s Table 5.2.

Thus Chow’s argument, to the extent that it can be taken
seriously at all, quickly brings us to a reductio. Either brain–
behavior studies are not empirical research, or they cannot use
NHSTP properly, or they do not involve theories. All these
possibilities are absurd, but Chow’s approach leaves us no others.
Better, of course, to conclude that his book is a description of
obsolete academic exercises, not any sort of practical reason – that
there is just no interesting scientific activity to which this charac-
terization of NHSTP applies. Chow manages to “justify” the old-
fashioned psychologist’s use of NHSTP only by constraining its
domain of application until its role becomes exiguous, perhaps
even imaginary. He certainly shows no empirical contexts in which
his version of NHSTP is of any relevance to modern behavioral or
brain science. To the extent that those sciences make appropriate
use of NHSTP in future work, those uses have no rhetorical
relation to the logic of inference put forward here. We will need to
turn to the discussions of others to learn a proper rhetoric of
significance-testing in the behavioral and brain sciences.

Null hypothesis tests and theory
corroboration: Defending NHSTP
out of context

Reuven Dar
Department of Psychology, Tel Aviv University, Tel Aviv 69978, Israel.
ruvidar@freud.tau.ac.il

Abstract: Chow’s defense of NHSTP ignores the fact that in psychology it
is used to test substantive hypotheses in theory-corroborating research. In
this role, NHSTP is not only inadequate, but damaging to the progress of
psychology as a science. NHSTP does not fulfill the Popperian require-
ment that theories be tested severely. It also encourages nonspecific
predictions and feeble theoretical formulations.

Systematic desensitization is a reliable procedure for treating
specific phobias; but it is inappropriate, even dangerous, as a
treatment for paranoid psychosis. Every formal procedure must
be evaluated in the context of its actual use. NHSTP may be
adquate for the modest task of ruling out chance as the explanation
of the data. But in psychology, like it or not, NHSTP is the
principal tool for testing substantive hypotheses in theory-corro-
borating studies. And in that capacity it is not only inadequate, but
may be destructive to psychology as a scientific discipline.

Chow’s recurrent tactic in contesting criticisms of NHSTP in
terms of its actual use in psychological research is to reject them as
representing nonstatistical issues. The most critical faults in
NHSTP, however, are exactly those that “go beyond statistics” to
the actual role of NHSTP in psychology. Chow labors to make a
distinction between the statistical and substantive hypotheses; but
in actuality, as any random study in psychology research journals
will confirm, the move from the substantive to the statistical
hypothesis is a swift one: researchers interpret statistical signifi-
cance as confirming the substantive hypothesis and therefore as
corroborating the theory from which the hypotheisis was derived.
And what choice do they have? NHSTP is the only formal
procedure currently available to the psychology researcher for
deciding whether the substantive hypothesis was confirmed. In
fact, without this direct link between NHSTP and the substantive
hypothesis, NHSTP becomes an isolated actuarial procedure
which has no role in theory development.

In stating that “the evidential support for the theory is secured
first by excluding chance influences” (p. 88), Chow seems to
presuppose that NHSTP is an essential component of sound
scientific practice. But as opponents of this ritual have noted, some
respected sciences, such as physics, seem to get away without this
essential step. In fact, as Meehl (1978) observed, so did the finest
research programs in psychology. When Skinner’s pigeons learned
to play ping-pong by operant conditioning, no one insisted that
NHSTP be conducted to compare their playing ability to that of a
wait-list control group.

Whereas NHSTP is not a universally endorsed criterion for
good science, most scientists and philosophers of science would
agree on this criterion: theories should make bold predictions and
be tested severely (Chow, in fact, explicitly subscribes to this
Popperian attitude). But in psychology, as argued above, NHSTP
is the only test to which a theory is put in any experiment. And, as
several opponents of NHSTP have noted, passing this test consti-
tutes an extremely weak corroboration of the theory from which
the experimental predictions were derived.

On this background, Chow’s insistence that “the exact magni-
tude of the effect plays no role in the rationale of theory corrobora-
tion” (p. 96) is truly puzzling. Doesn’t this assertion mean that a
theory that successfully makes accurate predictions is in no better
shape than a theory that predicts only that the magnitude of an
effect will exceed zero? Indeed, this position makes sense only if
one accepts Chow’s premise that NHSTP is not a test of the theory –
a premise which, as argued above, is patently false in the reality of
research in psychology. This premise is presumably also Chow’s
rationale for discarding as “unnecessary” (p. 57) Serlin and
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Lapsley’s (1985) Good-enough Principle, which represents efforts
to make NHSTP more demanding and thus to increase its signifi-
cance (in the real sense of the word) as a test of substantive
hypotheses.

From this perspective, which ignores the actual role of NHSTP
in psychology, it is hardly surprising that Chow disregards the
possibility that when substantive hypotheses in theory-
corroborating experiments are tested with NHSTP, this neces-
sarily affects the way predictions are formulated. When re-
searchers can only conclude, following a rejection of the null
hypothesis, that a mean difference was larger than zero, their
predictions (the substantive hypotheses!) would naturally be that
this parameter will exceed zero. That is why, in Chow’s own
example, the researcher predicts that it would be “more difficult”
to remember extra words after negative than after kernel sen-
tences, rather than making a more accurate (and risky) prediction
regarding the size of this difference.

I have argued (Dar 1987) that this state of affairs is detrimental
to the development of theories in psychology and may be inti-
mately related to Meehl’s (1978) alleged slow progress in soft
psychology. The ritual of NHSTP, as shown above, leads to trivial
predictions. Trivial predictions are in turn likely to lead to weak
and simplified theories: it takes much less thinking to formulate a
theory that leads to predictions of nonzero differences than a
theory that leads to more specific predictions. Consequently, as
Meehl (1978) observed, theories in the area of soft psychology are
typically short-lived: a theory cannot be compelling if all it is able
(or willing) to predict is a nonzero difference between groups.
Furthermore, when the only prediction in a theory-corroborating
study is that the group difference will exceed 0, either success or
failure in achieving this result can be easily accounted for by ad
hoc explanations, which end up undermining the theory.

Lakatos, who elaborated Popper’s view of science (which Chow
claims to endorse), had this to say about the role of NHSTP in
psychology: “after reading Meehl (1967) and Lykken (1968) one
wonders whether the function of statistical techniques in the social
sciences is not primarily to provide a machinery for producing
phony corroborations and thereby a semblance of ‘scientific prog-
ress’ where, in fact, there is nothing but an increase in pseudo-
intellectual garbage” (Lakatos 1978, p. 88). This is a bit sharp, I
admit; but if we wish to dull the edge of this criticism, we must find
a better way to test our theories. Chow’s defense of NHSTP does
not lead in this direction.

The logic of null hypothesis testing

Edward Erwin
Department of Philosophy, University of Miami, Coral Gables, Fl 33124.
eerwin@umiami.ir.miami.edu

Abstract: In this commentary, I agree with Chow’s treatment of null
hypothesis significance testing as a noninferential procedure. However, I
dispute his reconstruction of the logic of theory corroboration. I also
challenge recent criticisms of NHSTP based on power analysis and meta-
analysis.

Chow’s incisive (1996) book is timely, given that the American
Psychological Association’s Board of Scientific Affairs has recently
been considering banning the reporting of significance tests in all
APA journals (Shrout 1997). In this commentary, I will not address
the practical question of the likely effects of such a ban, but will
instead focus on an epistemological question: Is the null-
hypothesis significance-test procedure (NHSTP) deeply flawed?

Is it? That depends on the procedure we are discussing. Differ-
ent writers give different accounts of the form of the null hypoth-
esis, and different definitions of such crucial concepts as “alpha,”
“beta,” and “Type I and Type II errors.” The result is that there is a
family of related but different procedures all given the name
“NHSTP.”

In one very common version, NHSTP is an inferential proce-
dure for indirectly testing a research hypothesis by assuming the
truth of the null hypothesis and calculating the probability of
getting the experimental results if chance alone were operating.
Stated this abstractly, I suspect that many will agree, but differ-
ences will emerge when we specify the form of H0 (the null
hypothesis) and H1 (the alternative hypothesis). To illustrate,
sometimes H1 is specified to be the hypothesis that the difference
in the results between the conditions in an experiment is due to the
independent variable, and H0 is stipulated to be the negation of
H1. In other words, H0 is the negation of the research hypothesis,
such as “marijuana slows reaction time” (see Pagano 1994, p. 222).

If H0 takes this form, then no mistake is made when a re-
searcher infers H1 from not-H0 alone, but another rather obvious
problem arises: the usual decision rules for rejecting the null
hypothesis are incorrect (assuming that such rules are “correct” if
and only if satisfying their conditions justifies the inference they
specify).

For example, the following rule, which appears in an excellent
statistics textbook, is incorrect even if alpha is set at 0.001, rather
than the more usual 0.05 or 0.01:

(R) If the obtained probability is less than or equal to alpha,
reject H0. (Pagano 1994, p. 223)

The key problem, of course, contrary to what the rule permits, is
not merely that we are not entitled to infer from statistically
significant results alone that the research hypothesis is true. If that
were the sole problem, we could modify the rule to direct us to
infer not the falsity of H0 but the weaker conclusion that there is
some evidence for its falsity. The deeper problem is that the
finding of statistically significant results is not generally any
evidence at all that H0 is false if it is the negation of the research
hypothesis. At the very least, other plausible competitors to the
research hypothesis (besides a chance explanation) need to be
ruled out.

It may be that those who are endorsing inference rules such as
(R) are tacitly presupposing that the design of a particular experi-
ment is adequate for ruling out all plausible competitors to the
research hypothesis except a chance explanation. If so, some
warning should be given that R is not to be invoked in quasi-
experimental and epidemiological studies where the presupposi-
tion is not met. The warning is not needed, however, if we simply
include the presupposition in a new version of the rule:

(R1) If the design of an experiment is sufficient for ruling out all
rivals to H1 that are of equal or greater credibility, then if the
obtained probability is less than or equal to alpha, then reject H0.

For a reason to be given shortly, R1 is also incorrect, but even if
we waive this objection, there is another problem. Whether
correct or not, R1 is not an informative inference rule. Without
some specification of what constitutes meeting the first condition,
the rule does not make clear when H0 is to be rejected.

Chow avoids the above problems by, among other things,
stipulating a different form for the null hypothesis, and by not
endorsing any simple inductive rules for inferring the research
hypothesis from experimental results. In his account, it is an
oversimplification, if not a misrepresentation, to consider NHSTP
an inductive procedure (p. 67). The sole function of NHSTP, in his
view, is to exclude chance influences as an explanation (p. 88). This
exclusion is not in itself confirmatory, but it does play an important
role in theory corroboration as reconstructed by Chow.

I agree with Chow’s strategy of defending NHSTP by treating it
as a noninferential procedure, but I have some questions about his
reconstruction of theory corroboration.

In his theory corroboration example, H1 is that the mean
number of extra-sentence words recalled after negative sentences
is less than the mean number recalled after kernel sentences; and
H0 is that the mean number of extra-sentence words recalled after
negative sentences is greater than or equal to the mean number
recalled after kernel sentences (see p. 47). H0 is to be rejected,
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then, if the results are statistically significant. If H0 is shown to be
false, then we can use a disjunctive syllogism to show that H1 is
true (see p. 15). Given what H1 says, however, how do we move
from it to the conclusion that the results support the research
hypothesis, namely that the linguistic competence of native
speakers of English is an analogue of the transformational gram-
mar? Chow’s answer takes the form of three embedded syllogisms
(see p. 70, Table 4.2).

H1 serves as one of the premises of one of these syllogisms, the
conclusion of which serves as a premise of a second syllogism,
which in turn has a conclusion that serves as a premise for the final
syllogism. Given the premises of this last syllogism, the argument
would commit the fallacy of affirming the consequent if its
conclusion were the research hypothesis (the same fallacy would
be committed in the other two arguments if the conclusion were
the antecedent of the conditional premise). Chow is well aware of
the fallacy of affirming the consequent; to avoid it, he substitutes
for the research hypothesis in the final syllogism the proposition
that the research hypothesis “is true in the interim (by virtue of
experimental controls).” He makes a similar substitution in the
conclusion of the other two syllogisms. Chow later explains that
“true in the interim” indicates that the conclusion qualified by this
phrase is tentative (p. 77).

Inserting the phrase “true in the interim” renders each of the
three arguments innocent of the charge of the fallacy of affirming
the consequent, but it does nothing to guarantee validity. In fact,
all three of Chow’s syllogisms in table 4.2 (p. 70) are logically
invalid. For that reason alone, his account does not explain how
experimental data provide evidential support for a theory.

There are other problems as well. Chow intends to justify
instances of the “in the interim” qualification by virtue of the
stipulation “by virtue of experimental controls” (p. 72). This
introduces the same kind of unclarity I referred to earlier in
discussing Rule R1: without some general specification of what
constitutes adequate experimental controls, Chow’s account does
not give us a useful formal procedure for telling when experimen-
tal data are supportive.

There is a further problem to which I alluded earlier. Suppose
that in any given case the experimental controls are adequate for
discounting all known credible rivals to the research hypothesis,
and that a chance hypothesis is then ruled out. Can we then infer
that the research hypothesis has at least some tentative empirical
support? To answer “yes” is to assume the validity of the following
rule, which is one version of what philosophers refer to as the rule
of “inference to the best explanation”:

(R2) If H explains data D (i.e., it would explain the data if it were
true), and H is more credible than any known rival explanation,
and the data are statistically significant, then infer H (or at least
that H has some empirical support).

R2, however, is invalid. In some cases, we have evidence that the
set consisting of H and its known credible rivals contains the true
causal hypothesis that explains D. In other cases we do not; and
consequently, satisfying the antecedent of the rule is no guarantee
of empirical support (for further discussion, see Erwin 1996,
pp. 62–73; and van Fraassen 1989).

It may be that Chow and I are not far apart, given that he
expresses reservations about his attempt to lay out the logic of
theory corroboration. This topic is important in its own right, but
even if Chow has not succeeded here, this failure would not
undermine his defense of NHSTP, nor would it affect his criti-
cisms of power analysis, meta-analysis, or Bayesianism.

I will finish with a brief comment on arguments published after
the publication of Dr. Chow’s book.

John Hunter (1997) argues that NHSTP as currently used is a
disaster, and that it should be banned. His key argument is that the
error rate for the significance test is not the 5% that most
psychologists believe it to be but is, rather, on average 60% in
psychology. If the treatment in a study has an effect, he points out
(1997, p. 4), then the only error possible is a Type II error: falsely

concluding that the treatment has no effect. Studies show, Hunter
continues, that the Type II error rate in some areas is 90%, and is
60% on average.

As part of his evidence, Hunter relies on a study that found low
power rates for most of the 64 experiments that were reviewed
(Sedlmeier & Gigerenzer 1989). Why is this finding relevant to the
determination of Type II error rates? Hunter assumes that it is
relevant because he equates low statistical power with a high Type
II error rate (p. 5). This is a mistake, given his definition of a Type
II error (“falsely concluding that the treatment has no effect when
it actually does have an effect,” p. 4).

Suppose that a drug treatment for clinical depression has no
effect on depression, but clinical studies show improvement due
to placebo factors, which are not controlled for. If some of these
studies have low statistical power, the effects may not be statis-
tically significant, but in failing to reject the null hypothesis, that is,
that the observed effects are not caused by the treatment, no Type
II error is committed. In general, showing that studies are not
sensitive enough to detect a statistically significant result even if
there is one cannot by itself show that Type II errors are being
committed. An additional argument needs to be made that the
independent variable really did cause the effects specified in the
research hypothesis.

Of the 64 experiments reviewed by Sedlmeier and Gigerenzer,
7 had null hypotheses as research hypotheses (i.e., they were
hypothesizing no difference between treatments). In all 7 cases,
the experimenters took the lack of significance as a confirmation of
their research hypothesis. Sedlmeier and Gigerenzer object
(p. 312) that the power of the statistical tests was too low to warrant
any of these inferences, but they provide no evidence that in any of
these cases the null hypothesis was false; nor do they even claim to
provide such evidence for any of the remaining 59 experiments.

Hunter does have a second argument. He points out that in
Lipsey and Wilson’s (1993) review of 302 meta-analyses, in only 3
cases is the effect size 0, thereby suggesting that the null hypoth-
esis is true in a little less than 1% of the research domains
considered (p. 5). How does Hunter get from the premise that the
average effect size in the meta-analyses being reviewed is almost
always above zero to the conclusion that the observed effects were
caused by the treatment being studied? He does not say, but he
may be relying on the following inference rule (which might as
well be put on the table, given that it appears to be relied on in
some meta-analytic reviews):

(R3) If the average effect size in studies of treatment T is above
zero, infer that T caused the observed effects, or at least that this
hypothesis has some degree of empirical support.

R3 is incorrect. Given the standard ways of calculating effect
sizes (e.g., see Smith et al. 1980), the finding of effect sizes above
zero is neutral between competing hypotheses as to what caused
the effects. Whether or not anyone would ever rely on R3, we can
still ask: Of the hundreds of meta-analytic reviews that have been
published, how many provide solid evidence for their conclusions?
To answer that question, the type of review done by Lipsey and
Wilson (1993) is insufficient. Rather, what is called for is an
epistemological review of the arguments of meta-analytic re-
viewers.

No one has published such a review for any large sample of
meta-analytic reviews. There have, however, been epistemological
reviews of individual meta-analyses, such as the one done by Smith
et al. (1980), and the meta-analytic arguments have been found
flawed (Erwin 1997, Ch. 8; see Shapiro 1997 for examples from
cancer research). These examples are too few to support a general
skeptical conclusion, but they do suggest that it is premature to
conclude, on the basis of the meta-analyses done so far, that in
studies of psychological treatments, the null hypothesis is false
99% of the time, or even most of the time.
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Chow’s defense of null-hypothesis testing:
Too traditional?

Robert W. Frick
Department of Psychology, State University of New York at Stony Brook,
Stony Brook, NY 11790. rfrick@sunysb.edu www.psy.sunysb.edu/rfrick/

Abstract: I disagree with several of Chow’s traditional descriptions and
justifications of null hypothesis testing: (1) accepting the null hypothesis
whenever p . .05; (2) random sampling from a population; (3) the
frequentist interpretation of probability; (4) having the null hypothesis
generate both a probability distribution and a complement of the desired
conclusion; (5) assuming that researchers must fix their sample size before
performing their study.

Critics of the null-hypothesis statistical-testing procedure
(NHSTP) do not tend to criticize one another, despite differences
in their positions. For example, NHSTP is criticized but power
analyses are not, even though a power analysis assumes the
existence of NHSTP. Researchers are advised to report effect size
in statistical units such as Cohen’s d (e.g., Schmidt 1996) or to
report confidence intervals (e.g., Loftus & Masson 1994), but they
are not told to report confidence intervals for effect size reported
in statistical units. Cohen (1994) criticized the underlying logic of
NHSTP but then suggested that researchers report confidence
intervals because that accomplished NHSTP for all possible null
hypotheses.

One might expect the defenders of NHSTP to ally, but this
alliance too would be unnatural. I agree with Chow that NHSTP
plays an essential and irreplaceable role in science (Frick 1996). I
agree with many of his points, especially that effect size is not
relevant in the theory-corroboration experiment. However, I dis-
agree with many of the justifications Chow provides for NHSTP.
In this commentary, I will focus on ways that Chow is in a sense too
traditional. In assessing NHSTP, the actual practice of researchers
must be distinguished from the way it is described in textbooks and
the attempts to justify that practice logically. In each of the
following criticisms, Chow has defended the traditional descrip-
tion or justification of NHSTP rather than the actual practice of
researchers.

First, Chow implies that the null hypothesis is accepted when-
ever p . .05. Good researchers do sometimes argue that their
evidence supports a hypothesis of no effect or no difference, but
they use more evidence than just p . .05 (e.g., Frick 1995).

Second, Chow uses random sampling from a population to
justify the construction of the requisite probability distribution. 
This implies that researchers should sample randomly from pop-
ulations and that the business of statistical testing is making
claims about populations. I disagree. To make a claim about a
pattern in the data, such as that one treatment is more effective
than another, the researcher must address the possibility that this
observed pattern occurred just by chance. As Chow notes, statisti-
cal testing accomplishes this, with p being a measure of the
strength of the evidence against the just-by-chance hypothesis.
The outcome of statistical testing and a lack of artifacts – which I
call the finding – is a conclusion about the subjects tested. No
assumption of randomsampling is needed for this interpretation
(Frick, in press b).

Third, Chow defends the frequentist interpretation of proba-
bility, in which probability is defined as the limiting ratio of an
infinite sequence of trials. This definition confuses probabilities
with the method of measuring probabilities. In other words, it is
the operationalism Chow decries (p. 153). A propensity definition
of probability better justifies the procedures of NHSTP (Frick, in
press b).

Fourth, in the traditional justification of NHSTP, the null
hypothesis plays two roles – it generates the probability distribu-
tion underlying the determination of p, and it is the complement of
the researcher’s desired conclusion. These two roles are incompat-
ible. To generate the probability distribution, a point hypothesis,
for example, m1 5 m2 is needed. However, the complement of this

is m1 ± m2, which is not the claim researchers make and – as critics
of NHSTP are fond of noting – not even a claim worth making.
Researchers in practice make a directional claim, such as m1 , m2.
To allow this claim, Chow describes the null hypothesis as being
directional, for example, m1 # m2. However, this leads Chow to the
awkward position of primarily defending the use of a one-tailed
test, which researchers rarely use. This definition also does not
support the definition of p as the probability of achieving the
observed results or larger given the null hypothesis.

A solution is this: A point hypothesis is used to generate the
probability distribution. Following the conventional rules of sci-
ence, p , .05 allows rejection of this hypothesis, and it would also
allow rejecting the hypotheses even more discrepant from the
observed data. Therefore, a directional conclusion can be made.
This is exactly the process Chow describes (and Fisher before
him), but it cannot be described with a single null hypothesis
serving two roles.

Fifth, Chow equates NHSTP with the fixed-sample stopping
rule, in which the number of subjects is determined in advance.
Do researchers actually use the fixed-sample stopping rule? Do
researchers never (a) give up part way through a study because the
results were discouraging, (b) test less than the planned number of
subjects because p was already less than .001, or (c) test more
subjects than planned when p was slightly greater than .05? These
actions seem rational to me, but they violate the fixed-sample
stopping rule. Fortunately, the alternatives to the fixed-sample
stopping rule – sequential stopping rules in which the number of
subjects is not fixed in advance – are compatible with NHSTP.
Because of their increased efficiency and practicality, sequential
stopping rules should usually be preferred to the fixed-sample
stopping rule (Frick, in press a).

We need statistical thinking,
not statistical rituals

Gerd Gigerenzer
Center for Adaptive Behavior and Cognition, Max Planck Institute for Human
Development, 14195 Berlin, Germany. gigerenzer@mpib-berlin.mpg.de

Abstract: What Chow calls NHSTP is an inconsistent hybrid of Fisherian
and Neyman-Pearsonian ideas. In psychology it has been practiced like
ritualistic handwashing and sustained by wishful thinking about its utility.
Chow argues that NHSTP is an important tool for ruling out chance as an
explanation for data. I disagree. This ritual discourages theory develop-
ment by providing researchers with no incentive to specify hypotheses.

Future historians of psychology will be puzzled by an odd ritual,
camouflaged as the sine qua non of scientific method, that first
appeared in the 1950s and was practiced in the field for the rest of
the twentieth century. In psychology and education textbooks of
this period they will find this ritual variously referred to as
“statistical inference,” null hypothesis testing, significance testing,
and most recently, NHSTP. These historians will be surprised to
learn that the ritual was quickly institutionalized, although (1) the
eminent psychologists of the time – including Sir Frederick
Bartlett, R. Duncan Luce, Herbert Simon, B. F. Skinner, and S. S.
Stevens – explicitly wrote against its use (Gigerenzer & Murray
1987); (2) the statisticians Sir Ronald Fisher, Jerzy Neyman, and
Egon S. Pearson would all have rejected NHSTP as an inconsis-
tent mishmash of their ideas (Gigerenzer et al. 1989, Chs. 3 and 6);
(3) hardly any eminent statistician of the time endorsed it; and (4)
although it was presented to psychologists as the scientific
method, it never caught on in the natural sciences.

Chow (1996) responds to a paper (Gigerenzer 1993) in which I
used a Freudian analogy to capture how the conflicts between
Neyman and Pearson’s doctrine (the superego), Fisher’s null
hypothesis testing (the ego), and the Bayesians’s approach (the id)
have been projected into the psyches of textbook writers and
researchers in psychology. The results are wishful thinking, sup-
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pression of conflicts, and a statistical practice – null hypothesis
testing – that resembles ritualistic handwashing. For instance,
many textbook authors and the majority of experimenters do not
understand what its final product – a p-value – actually means (see
Acree 1978; Gigerenzer 1993; Oakes 1986; Sedlmeier & Gig-
erenzer 1989). Chow acknowledges this, but argues that if we can
strip NHSTP (his term for an inconsistent hybrid of Fisherian and
Neyman-Pearsonian ideas) of the mental confusion associated
with it, something of limited but important use is left. According to
Chow, NHSTP’s usefulness is “restricted to deciding whether or
not research data can be explained in terms of chance influences”
(p. 188). This sounds like a reasonable and modest proposal, and
Chow succeeds in pointing out many sources of confusion about
significance testing. I do not, however, believe that even in this
purified form NHSTP has much value for psychological research.
Rather, this ritual undermines progress in our field by giving
researchers no incentive to specify their hypotheses and by replac-
ing statistical thinking with a mindless statistical procedure.

Is testing unspecified hypothesis against “chance” a good
research strategy? No. The single most important problem with
null hypothesis testing is that it provides researchers with no
incentive to develop precise hypotheses. To perform a significance
test, one need not specify the predictions of either one’s own
research hypothesis or those of alternative hypotheses. All one has
to do is test an unspecified hypothesis (H1) against “chance” (H0).
In my experience, the routine of testing against chance using
NHSTP promotes imprecise hypotheses.

To be sure, there are cases where testing against chance makes
sense, such as in parapsychology.1 But read John Arbuthnot’s proof
of God against chance in 1710 – the earliest null hypothesis test of
which I know – and you see the flaws in this program (Gigerenzer
& Murray 1987, pp. 4–5). In a science striving for precise process
models, one needs methods that test the predictions of one model
against those of alternative models, not a ritual that tests an
unspecified hypothesis against chance.

Recall that statistical thinking involves making an informed
choice among the various techniques available. Avoiding statistical
thinking in the name of “objectivity,” as Chow’s implicitly advocates,
has produced blind spots in research (Gigerenzer 1987). There is a tool-
box of statistical methods for testing which of several predictions, if
any, comes closest to the data. For certain problems least squares
are useful, for others maximum likelihood, Neyman-Pearson anal-
ysis, Wald’s sequential analysis, or Bayesian models. But even
simple descriptive statistics can be better than null-hypothesis
testing at discriminating between hypotheses. For instance, Ander-
son and Cuneo (1978) proposed two hypotheses about the pro-
cesses underlying children’s estimates of the area of rectangles
(“adding” versus “multiplying” height and width). Following the
null hypothesis-testing ritual, they identified one with chance
(“adding”) and did not specify the predictions of the other. Because
the anova test was not significant, they took this as evidence for the
“adding” process. However, had the authors specified the precise
predictions of both hypotheses, they would have seen that the data
pattern was in fact close to that predicted by the “multiplying”
process and not by the null hypothesis (see Gigerenzer & Murray
1987, p. 100; Gigerenzer & Richter 1990). This example illustrates
one blind spot that results from using NHSTP, which requires that
the prediction of only one hypothesis be specified. Hypothesis
testing should be symmetric, not asymmetric.

NHSTP allows researchers to get away with imprecise hypoth-
eses and predictions. Testing an unspecified hypothesis against
chance may be all we can do in situations where we know very
little. But when used as a general ritual, this method ironically
ensures that we continue to know very little.

Compulsory rules. Chow proclaims that null hypothesis tests
should be interpreted mechanically using the conventional 5%
level of significance. This is what Fisher suggested in his 1935
book, a practice that was subsequently codified by many textbook
writers into a religious doctrine of “objectivity.” Later, this practice
was rejected by both Fisher and Neyman and Pearson, as well as

practically every other eminent statistician (Gigerenzer et al.
1989). The reason Fisher adopted a conventional level of signifi-
cance of 5% (or 1%) in the first place seems to have been that he
had no table, for other significance levels, partly because his
professional enemy, Karl Pearson, refused to let him reprint the
tables Pearson had. In the 1950s, Fisher rejected the idea of a
conventional significance level: “No scientific worker has a fixed
level of significance at which from year to year, and in all circum-
stances, he rejects hypotheses; rather he gives his mind to each
particular case in the light of his evidence and his ideas” (Fisher
1956, p. 42). He then recommended reporting the exact level of
significance instead (e.g., p 5 .03, but not p , .05).

In my opinion, statistical thinking is an art, not a mechanical
procedure. Chow’s view reminds me of a mechanical maxim
regarding the critical ratio, the predecessor of the significance
level: “A critical ratio of three, or no Ph.D.”

What we need to teach our students is neither NHSTP nor any
other statistical ritual. We need to teach them statistical thinking:
how to generate bold hypotheses, derive precise alternative predic-
tions, set up experiments to minimize real error (rather than just to
measure and insert error into the F-ratio), analyze data for each
individual separately if possible rather than automatically aggregat-
ing, and perform sound descriptive statistics and exploratory data
analysis. And we need to teach them that there are several
important statistical schools and tools, rather than pretending that
statistics is statistics is statistics is statistics.2 We should give
students examples of situations where each tool works and where
each does not work. Students should learn why Neyman believed
that null hypothesis testing can be “worse than useless” in a
mathematical sense (e.g., when the power is less than alpha), and
why Fisher thought that Neyman’s concept of Type II error reflects
a “mental confusion” between technology (such as in Stalin’s 5-year
plans) and science (Fisher disdained the Russian-born Neyman;
see Gigerenzer 1993). We can make statistics fun and interesting by
scrapping the thoughtless ritual advocated by Chow and instead
teaching students about the real statisticians and controversies
behind the diverse array of statistical tools we have. Choosing
among these tools requires statistical thinking, not rituals.

NOTES
1. Null-hypothesis testing (t-test and anova) was first applied in

parapsychology and education, from which it spread to basic research.
Danziger (1990) offers an interesting argument for why this happened in
the United States and not in Germany.

2. Chow acknowledges that there exist different logics of statistical
inference. But at the same time he falls into the it’s-all-the-same illusion
when he asserts: “To K. Pearson, R. Fisher, J. Neyman and E. S. Pearson,
NHSTP was what the empirical research method was all about.” (p. xi).
This statement is incorrect. Neyman and Pearson spent their careers
arguing against Fisher’s null hypotheses testing and developing their own
alternative, which rests on two precise hypotheses (rather than one null
hypothesis) and the concept of Type-II error (which Chow declares not
germane to NHSTP). Furthermore, for Fisher (1955; 1956), null-
hypothesis testing was only one of several useful statistical methods, such
as maximum likelihood and fiducial probability (Gigerenzer et al. 1989,
Ch. 3; Hacking 1965).

Stranded statistical paradigms:
The last crusade

Judith Glück and Oliver Vitouch
Institute of Psychology, University of Vienna, A-1010 Vienna, Austria.
judith.glueck@univie.ac.at; oliver.vitouch@univie.ac.at

Abstract: Chow tries to show that for the case of hard-core experimenta-
tion, the criticisms of NHST are not valid. Even if one is willing to adopt his
epistemological ideology, several shortcomings of NHST remain. We
argue for a flexible and thoughtful application of statistical tools (including
significance tests) instead of a ritualized statistical catechism that relies on
the magic of a.
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Chow’s (1996) book, a sequel to similar earlier publications (e.g.,
Chow 1988), is devoted to defending the holy grail of null-
hypothesis significance testing (NHST) against an armada of
increasingly influential critics. In his system of “theory-
corroboration experimentation,” Chow refers to idealistic experi-
mental settings best served by experimenta crucis. In fact, he
earnestly argues that ecological validity is detrimental to the
quality of a study (pp. 102, 104).

Chow’s logic of scientific discovery. Implying that he practices
Popperianism, Chow uses Popper’s “modus tollens” system of
falsification in a dubious way: “weak” NHST is promoted instead
of strong testing of highly specific theoretical predictions (cf.
Meehl 1978). In addition, Chow takes no notice of the critics of
theory corroboration itself: Lakatos (e.g., 1970) is not mentioned
at all; Kuhn (e.g., 1970) is referenced only en passant; not to
mention modern constructivist perspectives (see Folger 1989 for
an excellent discussion of Chow’s insufficient logic).

Chow’s seemingly modest argument is that “all we need” is a
deterministic binary decision as to whether or not there is an
effect. Unfortunately, statistics do not give us any instrument to
test the existence of an effect independent of its size. Even if a
researcher is not at all interested in effect size, it will be effect size,
in combination with sample size, that determines significance.

Advocating binary decisions, Chow directs a film that is strictly
black and white (accept/reject, pass/fail, heaven/hell). Unfor-
tunately, it is even mostly black (a film noir). For 35 years, a long
series of studies have shown that in vivo, power is usually much too
small to reliably reject a false H0 (e.g., Cohen 1962; Sedlmeier &
Gigerenzer 1989; and most recently, Clark-Carter 1997). While
Cohen & Co. typically focus on real-life research situations, Chow
persistently labels every point that could threaten his system as
“extra-statistical.”

Sometimes, size does count. The book does not give any
indication of what sample size should be chosen (because this is
impossible without reference to the concept of statistical power).
Chow, usually devoted to strictness, relies on good fortune on this
point: he seems to see researchers as a special type of idiot savant
who generally lack judgment, but have an intriguingly good sense
for appropriate sample sizes. If they do not get sample size right
(whatever “right” means in Chow’s view), they are either “cavalier”
or “cynical.” Sadly, Tversky and Kahnemann (1971) showed that a
huge percentage of the audience at a mathematical psychology
meeting must have been cynics, then. The cynical attitude also
seems to be widespread in the field of brain imaging, where
researchers draw inferential conclusions from median sample
sizes as small as eight (Vitouch & Glück 1997).

Taking rigidity for rigor: The a fetish. Chow defends a as a
mathematically well-grounded and objective criterion (it makes
good sense that there are giant a’s on the book’s cover). However,
mere replication of this statement does not alter the fact that a is a
normative and, to some degree, arbitrary convention (.05 and .01
are primarily “beautiful numbers”). Remarkably, Chow argues
that a chosen a level is well-defined, whereas a proportion of
explained variance is ill-defined. For a correlation coefficient,
most researchers would agree that beyond significance, the size of
the correlation is essential. But they often do not realize that a
t-test can also be expressed as a correlation between group
membership and the dependent variable, and the consideration of
corresponding anova indices of association strength or explained
variance (h2, v2) has not been generally established yet.

Whether p is .000007 or .048 does not make any difference in
Chow’s system; whether p is .048 or .051 is crucial. Chow believes
in a hybrid system of pure statistics (Gigerenzer 1993), adopting
the Neyman-Pearson concept of binary decisions based on a pre-
set a level (the Fisherian p is interpreted numerically), but
rejecting their related notion of pre-considering statistical power.
That is why he keeps affirming that “A smaller a value indicates a
stricter criterion” (p. 38), but never reflects that strictness against
the Type I error is inversely related to strictness against the Type II
error which may be equally crucial for the future of a theory. Chow

argues that the probability of a Type II error cannot be computed
because the true effect is unknown. However, since Type II errors
do occur, it seems more reasonable to take power into account
than to ignore the problem completely. Strict protection against
the wrong error can regularly be observed in cases of inverse
testing (like testing statistical assumptions or model fitting), where
b should be rigorously controlled. Here, p values – denoting the
probability of the data if the model were true – of .013 are often
happily accepted.

Style. The style of the text is often unfair and unobjective. On
p. 110, Chow states that “meta-analysis was originally developed as
a means to influence decision makers in some bureaucracy. This
motivation renders it understandable (but not justifiable) why
conceptual rigour or research quality is not deemed important in
meta-analysis.” Chow ignores the fact that introducing study
variables as breakdown criteria enables the meta-analyst to test
design influences on the outcome of studies – sorting apples from
oranges, and even gaining information about the difference be-
tween them. In his own words, “that meta-analysis may sometimes
be misused is an insufficient reason to abandon the method”
(Chow 1988, p. 109, “meta-analysis” replacing “the significance
test” – certainly the latter has far more often been misused).

Chow’s terminology is notoriously connotative: whereas power
analysis is “mechanical” and assessing effect sizes is “utilitarian,”
NHST is “qualitative,” “objective,” and “well-defined.” Promoting
a technical, thoughtless procedure (NHSTP) himself, Chow man-
ages to accuse Cohen’s power analysis of being technical and
thoughtless, whereas Cohen (1994, p. 1001) clearly states: “First,
don’t look for a magic alternative to NHST, some other objective
mechanical ritual to replace it. It doesn’t exist.”

Another technique can be summarized as follows: present one
good and one poor critical argument. Then, draw on why the poor
argument is foolish for many pages, until everybody has forgotten
the good argument. Subsequently, refer to the good argument
using the phrase “As has been shown.” For instance, intending to
prove that confidence intervals are useless, Chow only demon-
strates at length that they cannot resolve design flaws (Ch. 4.8).

A case for statistical enlightenment. We agree that statistical
conventions are necessary; but everybody should know that they
are conventions, and they should be handled thoughtfully and
flexibly, not as ritualized and mechanical procedures. Significance
tests can be a useful tool, but they are not magical, definite, or self-
contained – and they do not make decisions. It is always the
researcher who decides, based on the detailed information he has
at hand. Here, “Making sense is more important than making
numbers” (K. G. Jöreskog, personal communication, June 29,
1997). We hope that future researchers will be able to explain and
justify why they used a certain statistical approach instead of
depending on any magic formulas. Catechisms are no longer
needed – thinking is called for.

Understanding Bayesian procedures

Robert A. M. Gregson
Division of Psychology, School of Life Sciences, Australian National
University, Canberra ACT 0200. robert.gregson@anu.edu.au

Abstract: Chow’s account of Bayesian inference logic and procedures is
replete with fundamental misconceptions, derived from secondary
sources and not adequately informed by modern work. The status of
subjective probabilities in Bayesian analyses is misrepresented and the
cogent reasons for the rejection by many statisticians of the curious
inferential hybrid used in psychological research are not presented.

Arguments about the use of null-hypothesis significance testing by
psychologists now abound (Gonzalez 1994; Townsend 1994) and
seem to be of particular concern to the American Psychological
Association. These disputes have taken a rather different character
in other disciplines such as economics or physics, and in other
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locations such as Britain (Howson & Urbach 1994; Sivia 1996) or
Australia (Walley 1991). Chow starts with the well-worn disputes
between Neyman/Pearson and Fisher and notes, as others have
done, that what many psychologists actually do is a quaint hybrid of
the two positions. My first amazement, as one who studied under
Egon Pearson in the 1950s, is the assertion (p. 27) that inverse
probabilities were admitted in the Neyman/Pearson-developed
framework. It is true that Egon Pearson himself did modify
his metatheoretical stance a bit over the years, but the Neyman/
Pearson received doctrine was enshrined by F. N. David in
Pearson’s department; she admitted the use of Bayes’ theorem,
and hence inverse probability, only in some very restricted prob-
lems in genetics. She damned Bayesian inference and Sir Harold
Jeffreys by consigning them to footnotes and not mentioning them
supportively in lectures.

Chow would do well to learn a little of the sociology of sci-
ence, for Lindley, who succeeded Pearson, advanced the re-
surgence of Bayesian methods and produced critical refutations
of frequentist significance testing (Lindley 1965, p. 69) which
are not covered by Chow. Bayesian inference is now back in the
authoritative text with a volume to itself (O’Hagan 1994). In
fact, one can argue that the objections to subjective probability
and Bayes are a nineteenth century aberration (Dale 1991)
which has been redressed in the last thirty years – except by
psychologists. Chow’s book reveals an extensive ignorance of
what modern Bayesian inference is about, and its underlying
rationale. It substitutes uninformed polemic (Chow, p. 144, et
seq.) drawn from secondary derivative texts for a serious review
of contemporary statistical source literature.

My second amazement was caused by the absence of any
references to exchangeability (de Finetti 1974), sufficient statis-
tics, sample spaces, stopping rules, and maximum entropy
(Heidbreder 1996), all of which play important roles in Bayesian
criticisms of frequentist inference. Perhaps it is as well to note that
there are in fact Bayesian analogies of significance testing, and for
some decisions in simple situations they will lead to the same end
result as the frequentist cookbooks. The difficulties begin for the
frequentists, who are forced into a lot of ad hoc constructions,
when situations are complicated enough to stand a chance of
resembling psychological reality (Smith & Roberts 1993; Sun et al.
1996).

The obscurity of Chow’s criticism begins again on p. 145, where
some axioms are mentioned but not given. In fact the axioms that
support Bayes’ theorem are of two sorts: those on probability
spaces (Hartigan 1983, p. 30) and those on conjoint probability,
where the symmetry of

p(X ù Y) 5 p(XuY) ⋅ p(Y) 5 p(YuX) ⋅ p(X)

supports the substitution of H for X and E for Y and then some
rearrangement. But this in practice requires that the p(H) terms
be coherent; they are not just any old subjective degrees of belief
or willingness to bet. If they do not satisfy the condition of
coherence then contradictions will eventuate, and if they are
coherent then they will sufficiently satisfy the axioms of proba-
bility, an apparently little-known result (Cox 1946). I am aware
that in econometrics one can have nonadditive probabilities in
choice theory, but that is peripheral to the arguments as applied to
decisions about experiments.

Chow completely fails to grasp the logical status of probabilities
and wants to argue that Bayesian degrees of belief about the truth-
value of hypotheses are in fact frequency statements; this seems to
be a muddle between (1) p(EuH) likelihoods which are expressible
as relative frequencies if and only if we have a specifiable causal
model, and (2) p(Hi) for some series of n mutually exclusive and
exhaustive Hi, i 5 1, . . . , n, which are revisable degrees of belief as
data accumulate. The sad thing about Chow’s missed oppor-
tunities is that there are rigorous and comprehensible books about
Bayes (Bernardo & Smith 1994; Robert 1994) and about using a
Bayesian approach to the psychologists’ much-loved anova (Box
& Tiao 1973; Carlin & Loui 1996) with adequate worked exam-

ples. To quote a philosopher (Hanson 1958, p. 272) on reviewing a
book of similar worth: “Some books deserve to fall stillborn from
the press. A collection of confusions more comprehensive . . .
could hardly be invented.”

“With friends like this . . .”:
Three flaws in Chow’s defense of
significance testing

Richard J. Harris
Department of Psychology, Logan Hall, University of New Mexico,
Albuquerque, NM 87131. rharris@unm.edu

Abstract: Chow’s book should be read only by those who already have a
firm enough grasp of the logic of significance testing to separate the few
valid, insightful points from the many incorrect statements and misrepre-
sentations.

Chow (1996) makes a number of valid points about significance
testing. Principal among them is that rejection of H0 is only one
element in the process of testing a conceptual hypothesis. Chow’s
distinctions among the various purposes of research (e.g., theory
corroboration versus testing practical utility) in terms of the likely
size of the differences among conceptual, research, and statistical
hypotheses are also useful. However, the few positive contribu-
tions of Chow’s small paperback are lost in a sea of invalid
conclusions and misrepresentations. Examples follow:

1. The folly of accepting null hypotheses. Chow (p. 71) explic-
itly claims that “Not to reject H0 is to deny H1”; and he makes the
same point via symbolic logic in the accompanying Table 4.3 (and
elsewhere). This leads him to reverse the usual assertion that a
statistically significant result is less ambiguous than a nonsignifi-
cant result. Instead, Chow claims that a nonsignificant result
proves that the alternative hypothesis (and the theory that gener-
ated it) is wrong (and H0 is therefore true), whereas statistical
significance has a host of interpretations based on the many
alternative theories that could also have generated H1. But accept-
ing H0 (rather than simply failing to reject it) leads us quickly into
logical contradictions. For instance, it is not uncommon to find
that M1 is not significantly different from M2 and that M2 is not
significantly different from M3 but that M1 is significantly differ-
ent from M3. Assuming two-tailed tests, accepting H0 would lead
us to conclude (from the first two tests) that m1 5 m2 and that m2 5
m3, which jointly imply that m1 5 m3, and which directly contra-
dicts our conclusion (from the third test) that m1 differs from m3.
If, however, we “fail to reject” H0 our conclusions become that we
have insufficient evidence to be sure that m1 differs from m2 or that
m2 differs from m3, but we do have sufficient evidence to be
confident that m1 differs from m3 – a perfectly consistent set of
conclusions. The consequences of accepting H0 when using one-
tailed tests (which Chow uses almost exclusively, about which
more below) are even more perverse. Assume that we had pre-
dicted (H1) that m1 . m2 . m3 and assume further that the sample
means had come out in exactly that order, but with the (one-tailed)
tests of M1 versus M2 and of M2 versus M3 not quite reaching
statistical significance, while M1 versus M3 is significant. Accept-
ing H0 would lead us to conclude that m1 < m2 (despite the fact
that M1 . M2!) and that m2 < m3, which jointly imply that m1 < m3,
thereby coming to two conclusions that are inconsistent with the
direction of our sample differences among the means and which
jointly contradict both the observed M1 versus M3 difference and
the conclusion of our third significance test.

2. Consequences of “buying into” two-valued hypothesis-
testing logic. As Kaiser (1960) pointed out, insisting that there are
only two possible conclusions from a test of the difference be-
tween two means (m1 5 m2 vs. m1 not 5 m2 for a two-tailed test; m1
< m2 vs. m1 . m2 or m1 .5 m2 vs. m1 , m2 for a one-tailed test)
leaves us with no stipulation as to the direction of the population
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difference if we achieve two-tailed significance, and leaves us
unable ever to disconfirm our research hypothesis, no matter what
the outcome of a one-tailed test. Over 3.5 decades later, I pointed
out (Harris 1997a; 1997b) that “the researcher who takes tradi-
tional [significance-testing] logic seriously is thus faced with an
unpalatable choice between (a) being unable to come to any
conclusion about the sign of the effect or (b) violating the most
basic tenet of the scientific method (empirical data as the arbiter of
our conclusions).” Fortunately, most researchers ignore the dic-
tates of traditional, two-valued logic and instead implicitly adopt
Kaiser’s suggestion that every two-mean test be interpreted as
yielding three possible conclusions – that m1 . m2, that m1 , m2,
or that we have insufficient evidence to be confident of the
direction of the population difference. The one-tailed test simply
eliminates one of the two directional alternatives (whichever one
is opposite to the predicted direction) from consideration, and
thus represents scientifically unacceptable research behavior.

Properly interpreted, one-tailed tests are so antithetical to the
scientific method and two-valued logic leads so inexorably to a
preference for one-tailed tests that any analysis of significance
testing that endorses (as does Chow’s book) both one-tailed tests
and two-valued logic constitutes a threat to the proper socializa-
tion of researchers.

3. Power misunderstood and misrepresented. Chow claims
that the concept of power has nothing to do with significance
testing (cf. all of Ch. 6). However, his examples and arguments in
favor of this claim are seriously flawed. For instance, in each of his
examples of “power analyses” he changes the mean about which t
is centered to the actual population mean as the latter departs
from zero, thus leading, for example, to two purportedly null
distributions (Panels C and D of Fig. 6.2) centered about popula-
tion mean differences of 1.0 and 3.0, respectively. He further
argues that since power requires a consideration of two distribu-
tions while significance testing is based solely on the null distribu-
tion, the two cannot be related. This has the same logical status as
arguing that factor A has nothing to do with the A 3 B interaction
because a plot of A ignoring B requires a single line, while the A 3
B interaction requires a different line (set of means for different
levels of A) for each level of B. Most peculiarly, Chow argues that
power and Type II error (which other authors persist in seeing as
complimentary) have nothing to do with each other, because
power – Pr(reject H0unot H0) in Chow’s notation – cannot be
computed until we know the specific amount by which m1 2 m2
departs from its null-hypothesized value, whereas the Type II
error rate – b 5 Pr(fail to reject H0uH1) – is based on the broad
alternative hypothesis that incorporates all possible departures
from H0. This is nonsense, since we cannot compute b either, until
we have a specific value of m1 2 m2 (or a standardized version
thereof) with which to conjure.

Reconnecting data analysis and research
design: Who needs a confidence interval?

Andrew F. Hayes
Department of Psychology, University of New England, Armidale, NSW
2351, Australia. ahayes@metz.une.edu.au www.une.edu.au/,,,,ahayes/

Abstract: Chow illustrates the important role played by significance
testing in the evaluation of research findings. Statistics and the goals of
research should be treated as both interrelated and separate parts of the
research evaluation process – a message that will benefit all who read
Chow’s book. The arguments are especially pertinent to the debate over
the relative merits of confidence intervals and significance tests.

In Statistical significance, Chow argues that the null hypothesis
significance testing procedure (NHSTP) plays a “very limited,
albeit important” role in the research enterprise (e.g., p. 65). The
rejection of a null hypothesis allows one to rule out “chance” as a
plausible explanation for a research finding, thereby initiating a

sequence of logical deductions about the substantive hypothesis or
theory under investigation. But the validity of those deductions
depends on the quality of the research design and what the
research was intended to accomplish. In this book, Chow convinc-
ingly relinks statistics with research design, two mutually depen-
dent areas that often seem separated in both the science curricu-
lum and the minds of researchers (including critics of NHSTP),
while at the same time reminding the reader to keep the role
played by statistics and that played by research design separate
when they should be. NHSTP should not be criticized for a failure
to provide answers to questions that are better answered through
good research design (e.g., theory support) or that no statistical
procedure can or should be used to answer (e.g., practical impor-
tance of a research finding).

Chow’s arguments are especially relevant to the current debate
over the comparative benefits of significance testing compared to
the seemingly more informative effect-size and parametric confi-
dence interval. Advocates of confidence intervals claim that (1)
NHSTP retards the growth of scientific knowledge because it
ignores the quantitative information contained in a research
finding, that (2) statistically significant effects may be trivially
small, and that (3) rejection of a null hypothesis tells us nothing
about the truth of the substantive hypothesis. These criticisms of
NHSTP have many implicit assumptions which, when evaluated,
are found wanting.

The first assumption is that confidence intervals provide more
information about the truth of the substantive hypothesis than do
significance tests. But all inferential statistical procedures, includ-
ing confidence intervals, have only limited meaning in the context
of a study. Significance testing is simply a means of ruling out
“chance” as an alternative explanation for a research finding.
Critics of NHSTP are right that rejecting the null hypothesis of
chance tells us little about whether or not the substantive question
or theory the study was designed to test is true or supported (see
Ch. 3), but neither does a confidence interval that does not include
zero. Whether the “nonchance” mechanism producing a research
result (i.e., one that yields a nonzero effect) is the one proposed by
the investigator can only be determined by good research design –
namely, the elimination of competing explanations through proper
control of potential confounds and a convincing translation of the
substantive question into an empirical hypothesis. Neither
NHSTP nor confidence intervals can or should be used to decide
whether or not a research result supports an empirical hypothesis
or substantive theory.

It is also assumed by advocates of confidence intervals that they
provide more useful information than the qualitative information a
significance test yields – namely, the size of the effect and its
“practical importance.” But the information provided by a confi-
dence interval can be quite ambiguous, as the size of an effect and
the width of a confidence interval will depend on such factors as
how the variables are operationalized and how the effect is
represented statistically. Different operationalizations of the same
conceptual variables may yield different effect sizes (cf. Prentice
& Miller 1992). The relation of some measures of effect size, such
as the correlation coefficient or measures of “variance accounted
for” to the levels or values of the variables observed in a sample
may be artifactual. And, as Chow argues, there are many research
questions where the size of the effect is uninformative or irrele-
vant. In “theory corroboration” or “generality” studies, for exam-
ple, what is of interest is not the size of an observed effect but
whether chance can be ruled out as an alternative explanation for
the obtained results (i.e., a qualitative decision). Measures of
effect size are relevant only for the “utilitarian” experiment, where
the goal is to determine how much of a change is caused by various
levels of the experimental manipulation. A large effect does not
directly imply that the effect is important, nor does a small effect
mean that the intervention is not “worth it” in cost-benefit terms.
Cost-benefit questions cannot be answered by relying solely on a
statistical index or procedure (Chs. 3, 4, and 5).

However, Chow’s exclusive reliance on classical statistical the-
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ory based on the sampling distribution of a statistic continues the
tradition followed by confidence-interval advocates of overlooking
the mismatch between the predominant statistical inference
method and the data collection procedures typically used. Rarely
do researchers randomly sample from a specified population or
populations; instead, they usually collect their data from willing
and conveniently available participants. In the absence of random
sampling from a specified population, there is neither a statistical
basis for inferring values of “parameters” (as confidence-interval
advocates seem to desire) nor a solid theoretical justification for
using the sampling distribution as the reference distribution for
evaluating whether “chance” should be discounted as a plausible
explanation for the findings (cf. Edgington 1966; 1995; May &
Hunter 1993). But Chow’s arguments are still valid ones, as they
apply to any NHSTP, not just one based on random sampling and
parametric inference.

Finally, while the messages contained in Statistical significance
are important, they are unfortunately not always easy or entertain-
ing to find. The book reads much like a textbook on logic, filled
with jargon words and phrases (e.g., “disjunctive syllogism,” “af-
firming the consequent”), which I fear may limit its potential
influence. In several chapters, the reader is carefully guided
through a long series of logical arguments but must remember a
similarly long series of conditional propositions, antecedents,
consequents, and syllogisms that, after being initially explained,
are presented only symbolically (e.g., [P3.1.19]). Thus, while the
writing is disciplined, the reader must be similarly disciplined to
follow it. Nevertheless, the payoff is worth the effort. All users,
advocates, and critics of significance testing will find at least one
valuable lesson here if the book is given the attention it deserves.

Testing significance testing:
A flawed defense

John E. Hunter
Department of Psychology, Michigan State University, East Lansing, MI
48824. hunterj@pilot.msu.ed.

Abstract: Most psychometricians believe that the significance test is
counterproductive. I have read Chow’s book to see whether it addresses or
rebuts any of the key facts brought out by the psychometricians. The book
is empty on this score; it is entirely irrelevant to the current debate. It
presents nothing new and is riddled with errors.

Over the last 10 years, more and more psychometric experts have
recommended that the significance test be abandoned. Chow’s
book is widely touted as the “answer” to these criticisms. Chow is a
true believer and his book presents the significance test as the
greatest discovery in the history of science.

This is a curious book; written in a clear and articulate style, but
riddled with mathematical and methodological errors. It is the
worst statistics book that I have ever read, by a wide margin. A
literature search shows that the author has written an undergradu-
ate stat text and a series of articles on the teaching of statistics;
hence the polished writing style. However, that literature search
shows no instance of either empirical research or a substantive
literature review. Thus, the author is totally insensitive to real
issues of study quality and the devastating effect that sampling
error has had on the research review process.

About one third of the book is either directly or indirectly
devoted to an immensely wordy, repetitive, and convoluted pre-
sentation of one simple and well known fact. The evaluation of a
substantive hypothesis usually requires the examination of a wide
variety of different specific numerical findings. The author casti-
gates techniques which do not accomplish “theory corroboration”
but merely consider numerical findings. Thus, the author rejects
those who want quantitative measurement of effect sizes, those
who use or develop power analysis, and those who do meta-
analysis.

But the significance test doesn’t do “theory corroboration”
either! The significance test is a purely mechanical procedure for
judging an isolated numerical result. The significance test totally
ignores study quality; it makes no use of information on construct
validity, reliability, or biased sampling. In contrast, those who use
quantitative effect size measurement have long been concerned
with correcting values for study imperfections such as imperfect
measurement, range restriction, and so on. See Schmidt et al.
(1976) for an article showing exactly how statistical power is
related to specific objectively measured aspects of study quality.

Chow’s chapter on effect sizes reminds me of the “barefoot and
pregnant” strategy for wife management. If we do not teach
researchers to measure effects quantitatively, they will have only a
very tenuous grasp of sampling theory and thus they will not
understand statistical power: this has been proven by the teaching
methods and results of the last 60 years. Hence researchers will
continue to use significance tests blindly despite empirical studies
showing that the significance test has an average error rate of
about 60% (Hunter 1997).

The chapter on power is primitive and error-ridden. There are
no references to empirical studies on power or the implications of
meta-analysis findings for the determination of power in current
research (Hunter 1977). The author falsely claims that you cannot
determine power unless you already know the population value of
the treatment effect, but you can easily use a baseline value from
meta-analyses of similar studies. My personal reading suggests
that Chow really does not understand that sampling error will
occur in studies where the null hypothesis is false. He never shows
any recognition of the massive problem produced by false indica-
tions of conflict in the literature stemming from Type II errors; a
problem that is very severe when the significance test is wrong
60% of the time!

Chow’s treatment of meta-analysis is extremely bad. He makes
many errors in misstating other papers and ignores virtually all the
work on meta-analysis done by experts on sampling error. He
correctly indicates that the meta-analysis statistical techniques are
not “theory corroborative,” but meta-analysis was never intended
to evaluate theory directly: the objective of meta-analysis is fact
finding; the precursor operation to theory evaluation. Each sepa-
rate analysis is applied to a set of results where all studies have the
same independent and dependent variable (though this may be a
hypothesis to be tested rather than an assumption to be justified).
Meta-analysis evaluates specific numerical findings, not substan-
tive theories as such. On the other hand, how can you have
definitive theory testing if you do not have definitive determina-
tion of the specific numerical questions required for theory
corroboration? The function of meta-analysis is precisely to evalu-
ate the specific numeric questions that lie at the heart of theory
corroboration.

Does the significance test aid in theory corroboration? The
error rate for the significance test is 60%; how can it aid in
anything? Suppose that evaluating a substantive hypothesis re-
quires a correct answer to 5 questions. If you use significance tests,
then you have a 60% error rate for each answer. The probability of
getting a correct overall inference is thus (.40)ˆ5 5 .01024. That is,
using significance tests, you have a 60% error rate for specific
findings but a 99% error rate for the overall substantive evaluation.

Most psychometricians believe that the significance test is
counterproductive (Cohen 1994; Hunter 1997; Kirk 1996; Loftus
1996; Schmidt 1996). Researchers need to think of effects quan-
titatively and to understand confidence intervals as a way of
realizing the true extent of uncertainty in their findings. I have
carefully read Chow’s book to see whether it addresses or rebuts
any of the key facts brought out by the psychometricians. The book
is completely empty on this score; it is entirely irrelevant to the
current debate. Alas, the book also says nothing new and makes no
positive contributions to the field of methodology.
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If you’ve got an effect, test its significance; if
you’ve got a weak effect, do a meta-analysis

John F. Kihlstrom
Department of Psychology, University of California, Berkeley, Berkeley, CA
94720-1650. kihlstrm@cogsci.berkeley.edu socrates.berkeley.edu/
,,,,kihlstrom

Abstract: Statistical significance testing has its problems, but so do the
alternatives that are proposed; and the alternatives may be both more
cumbersome and less informative. Significance tests remain legitimate
aspects of the rhetoric of scientific persuasion.

I admit it: after more than 25 years of reading, writing, reviewing,
and editing scientific research in psychology and related fields, I
still cannot understand the fury that whirls around statistical
significance testing. Yet the critics seem to be gaining ground: the
American Journal of Public Health virtually banned tests of statisti-
cal significance from its pages, at least for a time, and the American
Psychological Association (APA) has seriously contemplated doing
the same. Whatever the outcome of the APA’s deliberations, the
pages of Psychological Science, the flagship journal of the Ameri-
can Psychological Society, will remain open to significance tests so
long as I remain editor. The reasoning behind this policy is more
pragmatic than mathematical, but I am glad to have my view
bolstered by Chow’s (1996) cogent, scholarly analysis of the
debate.

Criticisms of significance testing, at least within psychology,
take two broad forms (for representative samples of these criti-
cisms, see Gonzalez 1994; Hunter 1997; Loftus 1996; Schmidt
1996; for responses to Hunter’s paper, see Abelson 1997; Estes
1997; Harris 1997; Scarr 1997; and Shrout 1997). On the one hand,
it is argued that when the sample size is large enough, even trivial
effects can achieve statistical significance. Thus, effects can be
touted as “significant” that are in fact utterly trivial from the
standpoint of either theory or practice. On the other hand, it is
argued that the failure to achieve statistical significance causes
investigators (and other consumers of research) to discount effects
that might well be of theoretical interest or practical importance.
Thus, significance tests either deliver too much, by portraying
negligible effects as consequential, or too little, by insinuating that
genuine effects are nonexistent.

Rather than test for statistical significance, researchers are
sometimes advised to report confidence intervals instead. But
confidence intervals only make sense when the goal of the re-
search is to make a point estimate – for example, of the mean
family income for African Americans, or how many people will
vote Republican in the next election. In such cases, it is ridiculous
to test the null hypothesis, and researchers are well advised to
calculate confidence intervals as an index of the precision of their
estimates. But psychologists rarely wish to estimate population
parameters; rather, we generally test hypotheses about the effects
of particular treatments (e.g., two levels of distraction on mem-
ory), or about the relations between particular variables (e.g., two
dimensions of personality), which have been manipulated or
assessed because they are theoretically or practically interesting.

Suppose, for example, that a researcher publishes a study in
which psychiatric patients who receive imipramine score, on
average, 5 points lower on a depression scale than those who do
not, whereas the difference averages 10 points for those who
receive fluoxetine. Should a researcher simply report these point
estimates? Certainly not, because point estimates cannot speak for
themselves. In the first place, we’re not interested in the point
estimates, because they would be entirely different if the re-
searcher had used a depression test with different scaling proper-
ties. What we really want to know is: do either of these effects
differ from what would be observed in a placebo group? Do any of
these effects differ from zero? And do any of these effects differ
from each other?

These questions can be answered by calculating the confidence
intervals around each mean, and then determining the extent to

which these intervals overlap. But isn’t it much easier on everyone
if the researcher simply reports the results of an analysis of
variance followed by planned comparisons, adopting a conven-
tional level of statistical significance like p , .05 or .01? It is
important to bear in mind, as Chow (1996) clearly demonstrates,
that comparing confidence intervals and testing statistical signifi-
cance are, for all intents and purposes, mathematically equivalent
(remember the debate over analysis of variance versus multiple
regression?). And significance tests give you a p value to boot!

Of course, in this instance, significance testing might well
indicate that neither of the drugs differs from placebo and that
none of the means differ either from the others or from zero. Now
suppose that a dozen more such studies are published, each
yielding null results, but that a meta-analysis of the baker’s dozen
shows that, in fact, the effects of fluoxetine are greater than those
of imipramine, which in turn are greater than those of placebo,
which in turn are greater than zero. In this case, it is true that the
failure of the first study to reject the null hypothesis is misleading:
fluoxetine and imipramine are better than nothing. But the prob-
lem does not lie in statistical significance testing; rather, it lies in
the researchers’ failure to perform studies with enough power to
reject the null hypothesis in the first place, the reviewers’ failure to
detect this flaw, the editor’s willingness to accept the papers for
publication, and the readers’ willingness to take them seriously.

Even if the initial study had yielded significant results, of course,
there might have been problems. With huge Ns, even trivial
differences can achieve statistical significance. So, investigators
and consumers of research alike always have to ask themselves
whether they should really care about a “statistically significant”
result. How much variance is accounted for by the effect? Report-
ing effect sizes helps in this assessment, but in the final analysis the
standards for small, medium, and large effects (Cohen 1992) are
no less arbitrary (and no less context-specific) than the standards
for statistical significance. In any event, it should be understood
that none of these alternative techniques – statistical significance
testing, comparison of confidence intervals, or meta-analysis – has
any privileged status with respect to another important question:
Are any of the treatment effects clinically significant ( Jacobson &
Christensen 1996; Jacobson & Truax 1991; Jacobson et al. 1984)?
Clinical significance is sometimes assessed in terms of something
like effect size, although it is not clear that the simple expedient of
adopting stricter criteria for statistical significance would not yield
the same conclusions. In the final analysis, however, the problem
of clinical significance concerns the criteria by which treatment
outcome is assessed rather than the statistical tools by which
significance is documented.

I have dwelt on an example drawn from clinical research, but it
should be clear that similar considerations apply to basic, theory-
oriented research as well. Theories (formal or informal) generate
hypotheses about the effects of certain manipulations, or the
relations among certain variables, and statistical significance is
often the most convenient way of testing these hypotheses. Chow
(1996) does us a great service by pointing out that confidence
intervals and effect sizes have little to offer when we wish to
corroborate a scientific theory, where the hypotheses at stake are
not at the same level of abstraction as “H0 5 P does not exist, H1 5
P does exist” – and I wish he had said more about Fisher’s own role
in the mistaken equation of significance testing with null hypoth-
esis significance testing. Estes (1997) likewise reminds us that
tests of statistical significance are the chief means of testing how
well mathematical models or computer simulations of mental
processes fit actual empirical data. Given that theory testing is the
goal of science, and that formalisms such as operating computer
simulations represent psychological theorizing at its best (Simon
1969), it would seem foolhardy to abandon statistical significance
testing – even for those, like myself, whose theorizing never gets
beyond the vague and verbal.

Significance tests are not our only means of analyzing and
interpreting data, though, and we probably do rely too heavily on
them. That statistical significance testing has become something
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of a fetish is indicated by the reflexive way in which many
researchers (and not just novices) report artificially precise values
(e.g., p , .0438) ripped from their computer printouts, instead of
adopting conventional (and more conservative) ranges like .05,
.01, .005, and .001); by their persisting tendency to report one-
tailed tests when two-tailed ones would do just fine; and by their
inclination to conclude that p , .01 is “more significant” than p ,
.05). While I am grateful for Chow’s (1966) mathematical exegesis,
I wish that he had said more about these sorts of practical matters.

In the final analysis, the value of significance testing is practical,
as a component of the rhetoric of science (Abelson 1995). Re-
searchers can have their own subjective opinions about their own
and others’ results, but statistical significance tests are – how else
to put it? – public, empirical, tests of significance. They constitute
a principled way for researchers to claim that their experimental
results are worth knowing about, and for consumers to evaluate
researchers’ claims. At least since the time of Neyman and Pearson
(1928) and Fisher (1935), significance testing has kept the behav-
ioral, cognitive, and social sciences from lapsing into solipsism,
and they can continue to play this role, along with all the other
procedures in our statistical repertoire.

Statistical significance: A statistician’s view

Helena Chmura Kraemer
Department of Psychiatry and Behavioral Science, Stanford University,
Stanford, CA 94305. hck@leland.stanford.edu

Abstract: From a statistician’s viewpoint, the concepts discussed by Chow
relating to “statistical” significance bear little resemblance to the concept
developed in statistics. Whether or not “statistical significance” has a place
in psychological research is a decision for psychologists, not statisticians, to
make, but the decision should be based on a less flawed version of what is
being considered.

I generally agree with Chow’s conclusion but disagree with much
of his book. My objections would be allayed, however, were Chow
to rename his book something like “Psychological significance”
and to point out that his concepts had but a tangential relationship
to statistical significance testing as developed in the field of
statistics.

As Chow states, every research project begins with a substantive
hypothesis. To establish its truth usually requires a convergence of
evidence from many approaches, with null-hypothesis significance-
testing procedures (NHSTP) but one of the many to be considered
when the psychologists claim:

Claim: If I prove, beyond reasonable doubt, that “such and so” is
true, the credibility of the substantive hypothesis will increase.

The key phrase here is “beyond reasonable doubt,” encapsu-
lated in NHST in the significance level, a. Significance level is not
a probability, conditional or otherwise. It is a number between 0
and 1 selected by the proponent as the proposed upper limit of the
probability of any false claim that “such and so” is true. As such, it
reflects (1) the scientific standards of the proponent and (2) what is
acceptable to peer reviewers. What is so holy about a 5 5% or 1%?
Nothing. Why can’t it be 6% or 10% or 20%? However, a must be
set before the evidence (data) is collected and analyzed and (2)
peer reviewers must accept the levels as appropriate in the field of
application.

Critical also is translating “such and so” into the “null hypoth-
esis” H0, which has two components: H0: “such and so” is not true,
and certain assumptions are true. Only if one proposes to demon-
strate merely that “something nonrandom is going on” does the
null hypothesis posit chance or randomness. As others have so
eloquently pointed out, something nonrandom is almost always
going on, and it seems a trivial exercise to redemonstrate that fact.
Chow appears to believe that every H0 posits randomness.

Moreover, certain design or mathematical assumptions are
always incorporated into H0 – assumptions with which the psy-
chologists and statisticians (often tacitly) agree: normal distribu-
tions, equal variances, linear associations, and so forth, which play
a key role in NHSTP.

Problem 1: Chow’s definitions of “significance level” and “null
hypothesis” are either incomplete or imprecise.

In NHSTP the psychologists propose a research design that is to
produce certain data, and the statisticians propose that H0 be
rejected when a selected test statistic falls into a specified region.
To show that this is a valid a-level test, the statistician must show
mathematically that whenever the null hypothesis is true, using
this design and this proposed test, the probability of rejecting H0
by the proposed rule never exceeds a.

Problem 2: Under the null, as well as under the non-null
hypothesis, there are typically many distributions, one for each
possibility. The appropriate graphic is the operating characteristic
curve, a graph of the probability of rejecting H0 when each such
possibility is true, and not any one or two “bell-shaped”
distributions.

In any case it is uncommon that the distributions on which
probabilities are based are exactly “bell-shaped” at all, but that’s a
quibble.

Problem 3: The formulation of the proposed testing procedure
specifically depends on the form of the alternative hypothesis.

To take the simplest example, the difference between a proposal
for a one-tailed versus two-tailed t-test depends strictly on the
formulation of the alternative hypothesis. Generally, selecting a
NHSTP sensitive to the researcher’s specific claim is an essential
part of the process of selecting an appropriate NHSTP.

Problem 4: For any claim, there are many different valid
NHSTPs, among which a choice must be made. Chow removes the
primary basis for such a choice when he recommends against
power analysis.

Again, take the very simplest situation of a two-sample t-test:
What is the proposed total sample size? What proportion of the
total sample will be assigned to or selected from the two groups?
Will the sample be stratified or matched? Will there be only an
endpoint observation for each subject? If more, when and how? Is
the two-sample t-test the best choice of test? Each of these
decisions changes the NHSTP. Statisticians would base the choice
on comparisons of power. How would Chow choose among them?

When researchers either reject or do not reject H0 what is it that
is rejected or not rejected? If one rejects H0, what one logically
accepts is Not-H0: Either the claim is true OR some of the
assumptions are not true. Any power calculations were done for
the so-called alternative hypothesis: The claim is true AND all the
assumptions are true. But the psychologists’ claim was: The claim
is true.

How well Not-H0 or the alternative hypothesis corresponds to
the claim depends on how well those assumptions correspond to
reality. If crucial assumptions are not reasonably well satisfied,
what does it matter whether or not results led to rejection of H0?
The results are likely invalid.

Problem 6: If the NHSTP is valid, rejecting H0 or not rejecting H0

is a comment on the strength of the evidence to make a certain
claim, not a comment on the truth or falsehood of either the null
or alternative hypotheses, on the effect size, or on the future
replicability or confirmability of the conclusion. Each of these
interpretations is at some time indicated by Chow’s presentation.

When one validly rejects H0, one in effect says, “The evidence is
strong enough to risk making a claim that ‘such and so’ is indeed
true.” When the result is “non-significant,” one says: “The evi-
dence is not strong enough to risk making any claim with regard to
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‘such and so.’ ” The evidence may not be strong enough for a
variety of reasons, all related to inadequate power (See Problem 5).

Problem 7: The essence of a research paper is the evidence
presented, not the conclusion the authors draw. Such evidence
must include descriptive statistics, which would inevitably include
or indicate effect sizes.

Chow’s opposition to effect sizes is inexplicable to me, since it
amounts to saying “I have strong evidence supporting my claim,
but I won’t show you what it is!”

Problem 8: The operating characteristic curve of a NHST has
nothing to do with the receiver operating characteristic (ROC) in
signal detection theory application.

In signal detection theoretic application, there are a series of
independent trials, on each of which one observes (Ti, Si), where
Ti corresponds to what in the NHST is the test outcome, and Si
indicates whether on that particular trial, the signal was delivered
or not. The crucial fact is that the signal is present on some trials
and absent on others.

In NHST the “signal” is presumably the truth or falsehood of
H0. But if one considers multiple independent tests (trials) of H0,
H0 is always true, or always false, not true on some trials, false on
others (even in the Bayesian approach). Without trial to trial
variability in the truth/falsehood of H0, there is no ROC. Perhaps
Chow is confused by the fact that terms such as “operating
characteristic,” “false positive,” and “false negative” are used in
both contexts.

In the end, whether or not to use NHST in psychological
applications is the choice of psychologists, not of statisticians. As a
statistician, my concern is only that if NHSTs are to be used (or any
other statistical approach), they be used correctly and to full
advantage. Those who find NHST incomprehensible or uncon-
vincing, or who feel there are better alternatives, should not use
NHST in their own research, should not as members of peer
reviewer groups, reviewers or editors of papers, or readers of
research reports, accept results based solely on NHST. If there are
enough such psychologists, NHST would quickly disappear from
psychology without any need for a formal “Ban the p-value!”
movement. That would neither please nor bother me.

What I find troublesome is that psychologists like Chow create a
version of NHST ill-corresponding to that in the statistical litera-
ture and advocate its use, for they will likely misuse or abuse the
approach. But the fact is that these same psychologists will likely
misuse or abuse statistical methods regardless of what statistical
approaches were to replace NHST. If banning is the only solution,
“Ban the p-value!” may not be enough. We would have to ban use
of all statistical methods in psychology. Surely the situation is not
as bad as that?

The Ego has landed! The .05 level of
statistical significance is soft (Fisher) rather
than hard (Neyman/Pearson)

Lester E. Krueger
Department of Psychology, Ohio State University, Columbus, OH
43210-1222. krueger.2@osu.edu cog.ohio.state.edu/homepage/
cfaculty/krueger.html

Abstract: Chow pays lip service (but not much more!) to Type I errors and
thus opts for a hard (all-or-none) .05 level of significance (Superego of
Neyman/Pearson theory; Gigerenzer 1993). Most working scientists disre-
gard Type I errors and thus utilize a soft .05 level (Ego of Fisher;
Gigerenzer 1993), which lets them report gradations of significance (e.g., p
, .001).

I agree with Chow (p. 117) that the null-hypothesis significance-
test procedure (NHSTP) has a highly circumscribed yet vital role

as the initial gatekeeper in scientific research. As he writes,
“statistical significance means nothing more than the decision that
chance influences may be ruled out as an explanation of the data
with reference to a particular criterion of strictness” (p. 188). But
is Chow’s “criterion of strictness” (conventionally, the .05 level of
significance) hard (the alpha of Neyman/Pearson theory) or soft
(the p value of Fisher)?

For Fisherians, the .05 level is simply a convenient benchmark,
with other levels being important as well, that is, there are
gradations of significance. Chow (p. 39) faults this flexibility,
equating it with ambiguity in the choice of the criterion. He
prefers “the Neyman–Pearson recommendation that the a value
be set before data analysis” (p. 39). However, the “criterion-choice
ambiguity” that Chow attributes to the Fisherians is not really
evident. Except for special cases (e.g., multiple comparisons; see
Cowles 1989, pp. 171–74) and certain aberrations (e.g., the late
Fisher; see Gigerenzer 1993, pp. 316–17), the significance level of
.05 seems to be the one universally adopted (Cowles & Davis 1982;
Hogben 1957, p. 320). Nor is ambiguity evident regarding what
the gradations of significance mean. Conventional usage dictates
that one term p , .10 “marginally significant,” p , .05 simply (or
barely) “significant,” p , .01 “highly significant,” and p , .001
“very highly significant” (see, e.g., Cohen 1990, p. 1309).

In the short-term Fisherian approach, a plausibility or p value is
attached to each test statistic, that is, “the level of significance
carries a meaning with respect to a single experiment” (Gig-
erenzer & Murray 1987, p. 26). Thus, “Fisher . . . would have
preferred that the exact level of significance, say p 5 .03, be
reported, not upper limits, such as p , .05, which look like
probabilities of Type I errors but aren’t” (Gigerenzer 1993, p. 329).

In the long-term Neyman/Pearson approach, all that matters is
whether the outcome is significant or not; the particular p value is
irrelevant (or worse!). P values that might seem quite close, such as
.048 and .052, actually differ like night and day. Chow agrees that
treating .048 and .052 differently is “not nonsensical” (p. 97) and
that “the rigid adherence to this rule speaks ill of neither NHSTP
nor its users” (p. 97). Thus, for Chow, ruling out chance influences
“is an all-or-none issue” (p. 183); contrary to the Bayesians and
others, “whether or not data from Study S warrant accepting the
to-be-corroborated explanatory hypothesis is an all-or-none mat-
ter” (p. 187).

Chow’s adherence to the hardline Neyman/Pearson decision-
making approach (aptly termed Superego by Gigerenzer 1993) is
also evident in his focus on a single test statistic. Because it deals
with plausibility rather than errors, the softer Fisherian approach
(termed Ego by Gigerenzer 1993) allows a multitude of test
statistics. That flexibility has been exploited in medical studies on
bioequivalence (Rogers et al. 1993), which utilize not only the
traditional test statistic, based on zero difference between name-
brand and generic versions of a drug, say, but also the test statistics
for the two one-sided hypotheses representing upper and lower
just-nontrivial differences. Such flexibility is taken to the extreme
in the case of the (1 2 alpha)% or 95% confidence interval, which
encompasses (and thus identifies) all those null hypotheses for
which the corresponding test statistic would produce a significant
result at the alpha or .05 level.

Chow (p. 23) depicts Neyman and Pearson as Bayesian. How-
ever, Neyman and Pearson had only flirted with the Bayesian
position (Oakes 1986, p. 110). In fact, Gigerenzer (1993) has
argued that “Neyman and Pearson took the frequentist position
more seriously than Fisher” (p. 316), citing “Fisher’s quasi-
Bayesian view that the exact level of significance somehow mea-
sures the confidence we should have that the null hypothesis is
false” (p. 318). Likewise, Hogben (1957) contrasted the Backward
Look or retrospective orientation of Fisher and the Bayesians, who
relied on the sample outcome to infer the plausibility or likelihood
of a hypothesis, with the Forward Look of Neyman/Pearson
theory, which focused on predicting the proportion of correct
decisions in future tests of a hypothesis.

Chow writes that “the choice of the a level is arbitrary” (p. 5),
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owing to the lack of a priori and theoretical justification. In
Neyman/Pearson theory, however, alpha is anything but arbitrary,
because it represents the conditional probability of Type I errors.
Alpha has bite (i.e., real consequences!) in Neyman/Pearson
theory. Type I errors have no role for the Fisherians: “the signifi-
cance level connotes [for Fisher] no probability of erroneous
decisions due to rejecting or accepting the null hypothesis” (In-
man 1994, p. 8). (In his Table 2.3, p. 21, Chow errs in listing Type I
errors and alpha under Fisher as well as Neyman/Pearson.)

The extra bite of Neyman/Pearson theory comes at the price of
strong assumptions (e.g., repeated random sampling; replications;
see Hogben 1957), which Fisher was not shy about questioning.
Chow does not make clear whether he accepts those assumptions,
nor does he exhibit all that much concern about Type I errors,
whose level, alpha, he terms “arbitrary.” When he states that
“statistical significance means simply that chance influences may
be discounted” (p. 65), and that we ought to replace the term
“significance” with “not chance,” owing to “the unwarranted
connotative meanings of the word ‘significance’” (p. 128), Chow
seems to be backsliding toward the simpler, but weaker, Fisherian
position.

Chow very aptly extolls the many fine qualities of the theory-
corroboration experiment as compared with the utilitarian one.
Fisher did the same thing in railing against the Neyman/Pearson
decision-making position, which he wrote was better suited for the
factory floor than the scientific laboratory (Oakes 1986, p. 125).
Chow might have credited (or criticized!) Fisher for that.

For Chow, NHSTP is concerned solely with ruling out chance.
This is a bit odd, given that a nonsignificant result may actually
have a logically firmer or more valid effect on the higher-order,
nonstatistical (i.e., substantive, research, experimental) hypoth-
eses than a significant result (Chow, pp. 71–72). If a well-
designed, highly sensitive study yields a resoundingly nonsignifi-
cant test statistic, should the null hypothesis be simply, but firmly,
retained (i.e., “safely ignored,” Chow, p. 119), or should it be
accepted? Chow recognizes the dilemma (p. 63), but is loath to
sanction accepting the null hypothesis, even though that may in
many cases be just as meaningful as rejecting the null hypothesis
(Frick 1995; Greenwald 1975; Rogers et al. 1993). Chow (p. 56)
does help pave the way for the acceptance of the null hypothesis,
though, by quite effectively dismissing the view that the point-null
hypothesis, as a categorical proposition, is necessarily always false.

Chow does a masterly job in providing an overview and in
setting the stage for his defense of NHSTP. By making numerous
valuable distinctions, such as that between statistical and non-
statistical (e.g., effect size) matters, he dispels many conceptual
confusions. Alas, some key distinctions (hard vs. soft .05 criterion;
accepting vs. rejecting the null hypothesis) were not drawn as
sharply. Also, Chow errs in attributing to signal detection theory a
reliance on a threshold (N. 2, p. 142), and in citing the central limit
theorem (e.g., p. 35) when what he really meant was the law of
large numbers.

Logic and the foundations
of statistical inference

Henry E. Kyburg, Jr.
Department of Computer Science, University of Rochester, Rochester, NY
14627. kyburg@cs.rochester.edu www.cs.rochester.edu./u/kyburg

Abstract: The rapprochement between methodology and statistics sug-
gested by Chow’s book is a much needed one. His examples suggest that
the situation is even worse in psychology than in some other disciplines. It
is suggested that both historical accuracy and attention to recent work on
the foundations of statistics would be beneficial in achieving the goals that
Chow seeks.

Chow has made a commendable effort to bring together the two
worlds of statistical practise (in psychology) and scientific meth-

odology. Unfortunately, the results of his efforts provide powerful
evidence of the need for precisely the kind of rapprochement that
is his worthy goal. There is more information about and under-
standing of statistics and methodology out there than one would
suppose from what Chow says. He is quite right, though, in saying
that it is not easy to get at, and that many people make no serious
effort to get at it. His demonstration that some disputes about
statistical evidence in the social sciences are uninformed is persua-
sive.

Consider the methodological insights of John Stuart Mill, for
example, Mill’s methods (1843) were for many years standard diet
in courses in general logic. This has not been the case for roughly
50 or 60 years. The reasons are simple: Mill’s methods are
simplistic, and philosophical writers after Nagel (1961) have
thought it more important to emphasize the richness and complex-
ity of good empirical methodology rather than the “catch phrases”
of Mill. One may indeed argue that the pendulum has swung too
far, and that simplicity is a virtue, so long as its shortcomings are
also realized. It may well be that Mill’s methods will once again
play a role in beginning courses in general logic. But a bit of
Millian salt is not going to turn statistical hash into roast duckling.

Logic, however, is not Chow’s strong point. Page 30 contains the
following three statements: (1) “The truth value of a conditional
proposition is determined by the relationship between its anteced-
ent and consequent.” (2) “a conditional proposition is false only if
its antecedent is true while its consequent is false.” (3) “The
general point is that the truth value of a conditional proposition is
not determined solely by the truth value, its consequent or its
antecedent.” And also on page 132: “It is incorrect to treat H1 as
synonymous with ‘not-H0’, although H1 and H0 are mutually
exclusive and exhaustive alternatives” (Chow 1996).

In Chapters 3, 4, and 5, Chow distinguishes among several kinds
of experiments and applies ideas derived from Mill’s methods
(agreement, difference, concomitant variation) to each. Given the
real examples that he analyzes, this exercise is not useless: some
worthwhile criticisms emerge from his analyses. It is these critical
studies of psychological methodology that provide the best argu-
ment for the explicit study of inductive methodology and consti-
tute one of the most valuable features of the book. Chow is well
equipped with common sense, and it is well applied.

Chow argues that statistical significance testing is an important
ingredient in empirical research, but that its role is severely
limited. One step in the investigation of a phenomenon is to rule
out the possibility that the alleged phenomenon under investiga-
tion is an artifact – that an apparent difference is merely the result
of chance. Of course, this is exactly Fisher’s attitude. “[T]ests of
significance are used as an aid to judgment, and should not be
confused with automatic acceptance tests” (Fisher 1963, first
edition 1925). Also, “In general, tests of significance are based on
hypothetical probabilities calculated from their null hypotheses.
They do not generally lead to any probability statements about the
real world.”; and “[t]he force with which such a conclusion [that
the effect is not due to chance] is supported is logically that of the
simple disjunction: Either an exceptionally rare chance has oc-
curred, or the theory of random distribution is not true.” (Fisher
1956, pp. 44, 39).

While Fisher thought of statistical decision theory as “statistics
for shopkeepers,” Neyman, perhaps the most influential of statisti-
cians, thought of decision theory as lying at the heart of statistical
methodology. Neyman was perfectly clear about inverse proba-
bility: it makes sense when you have a statistically justified or
assumed prior distribution and this is, practically speaking, almost
never. The joint paper cited by Chow (Neyman & Pearson 1928)
contains a vaguely tolerant passage about inverse probability. After
1933 this tolerance, particularly on the part of Neyman, begins to
disappear. But it is perfectly clear that from the beginning the idea
of looking for inverse probabilities of the form P(HuD) did not
enter Neyman’s mind as a practical possibility. To characterize the
Neyman/Pearson approach as being focussed on inverse proba-
bility (p. 36) is the opposite of the truth.
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Probability, for Neyman, was a strictly frequentist notion. He
was explicit, for example, about the fact that probability does not
apply to single cases (except for probabilities of 0 and 1), and thus
did not apply to hypotheses or even to “false rejection” after
experimentation or observation. It is a mistake (from the classical
point of view) to say that the probability is .95 that a frequency lies
in a specific .95 confidence interval. Inverse probability was
anathema to Neyman (1942; Neyman & Pearson 1933).

Furthermore, it is often difficult to know what the author is
trying to say about probability. For example, speaking of effect size
and statistical power in the introduction to the chapter on Bayesia-
nism, Chow claims that “a motivation underlying power analysis is
to adopt a direct means of ascertaining the probability of the truth
of the substantive hypotheses,” and, in the very next sentence,
claims that “the meaning of probability (viz., a relative frequency)”
is not challenged. But it clearly makes no sense whatever to talk of
the relative frequency of truth of the substantive hypothesis; a
hypothesis is either true or false.

Bayesianism does not fare much better. The key source for
Bayesianism is Jeffreys (1939), rather than Savage (1954) or the
voluminous recent literature. When Chow gives an example of
Bayesianism, the three alternative hypotheses, apparently to be
considered exclusive, are given a total probability of 1.5. It is hard
to understand this, because the author correctly characterizes a
prior subjective probability of .60 as corresponding to the willing-
ness of the agent to pay $60 for a return of $100 if the correspond-
ing hypothesis turns out to be correct. Is the agent just contribut-
ing $50? That the probabilities do not add up to 1.0 is excused (in a
footnote) on the grounds that “some evidence may be compatible
with more than one hypothesis” (Chow, 1996, p. 174).

The interesting thing about Chow’s book is not that he gets his
history wrong, since that is not difficult to correct, or that he is
unclear about the possibilities of interpreting probability; it is the
attempt to tie together conventional statistical wisdom (or foolish-
ness) and issues of methodology. Mill’s methods have not been
fashionable for many decades. Philosophers have mostly focussed
on probability, if they have been concerned with quantifying
scientific inference, or with “paradigms” and “revolutions” if they
have been concerned with the qualitative historical shifts in
scientific knowledge. The law of the pendulum suggests that we
may well have gone too far in playing down methodological issues,
and Chow provides us with both a welcome corrective for our
neglect and a new slant on conventional statistical methods.

Nevertheless, it could be argued that his work suffers from its
own pendulum excess. It could be said that this defect stems from
Chow’s own lack of understanding of the issues underlying the
interpretation of probability and the foundations of statistical
inference. The interested reader might want to take a look at
Godambe and Sprott (1971), who present the results of a lively
conference on the foundations of statistical inference, or Kyburg
(1974), which contains, in addition to a particular thesis, an
analysis of the main alternatives in the foundations of statistical
inference.

A defense of statistical power analysis

Brian R. Lashley
Department of Psychology, University of Connecticut, Storrs, CT 06269.
lashley@NECA.com

Abstract: Chow attacks statistical power analysis on theoretical grounds. I
argue that if significance testing is defensible, so is power analysis. A
number of Chow’s criticisms seem to suggest that power analysts are
confused about certain fundamental issues. I claim that few power analysts
make the mistakes Chow describes. Finally, I address Chow’s claim that
power analysis is irrelevant to NHSTP because it deals with a different
issue.

Although statistical power analysis is an integral component of
methodological development in empirical research, Chow de-

bates its validity. That is a puzzling stance for someone who
defends statistical significance testing. I find it puzzling because
researchers should be aware of the Type I and Type II error rates
of the research designs and statistical techniques they use. These
error rates can be assessed by certain types of power analyses.

An important assumption in the present discussion is that in
disdaining power analysis Chow also disdains computer simula-
tions which provide quantitative assessments of research designs
and data analysis techniques via computer simulation.

To ensure the accuracy of their conclusions, researchers should
use significance testing techniques that minimize both kinds of
error. Some statistical significance testing procedures have both
lower Type I error and lower Type II error rates than others (e.g.,
Lashley & Bond 1997; Lashley & Kenny 1997). This is important
information for researchers who need to know which effects in
their research are statistically significant and which ones are not.
Monte Carlo Power analyses provide quantitative assessments of
statistical significance tests and allow researchers to choose the
most effective test.

The thesis of the present critique is that Chow criticizes power
analysis inappropriately. Several of Chow’s criticisms seem to
suggest that power analysts are either unaware of certain issues, or
unwilling to acknowledge them.

For starters, Chow (p. 119) says that the probability (1 2 b) is an
unknown value. This is technically true as long as the population
value of the parameter of interest is unknown. However, quantita-
tive researchers often use computer simulations in which they
conceive a population and sample from it repeatedly. These
investigators know the population values of the parameters they
investigate. Typically, these parameters include the mean and
standard deviation, which are used to compute (1 2 b). In such
cases, the power is known.

On the same page, Chow says that the conditional nature of
statistical power is not acknowledged in assertions about statistical
power. Quantitative writers may not always remind readers about
the fact that statistical power is based on the condition that the null
hypothesis is false, but some authors of computer simulation
research (e.g., Lashley & Bond 1997) refer to power as the
proportion of false null hypotheses rejected. That wording alone
should suffice as evidence that the authors are aware of the
conditional nature of power. In other cases, authors might safely
assume that the reader is aware that only when the null hypothesis
is false can a significance test have statistical power.

Chow (p. 124) says that “the statistical alternative hypothesis,
H1, is identified with the hypothesis about Phenomenon P in
power analysis . . . it is asserted that if Phenomenon P exists, its
effects must be detectable.” In other words, power analysts treat
statistical power as the probability that an empirical investigation
will provide support for the substantive hypothesis. I cannot speak
for all power analysts, but I think power analysts realize the
difference between quantitative and substantive information. I
think all power analysts would realize that the probability they are
assessing is that of obtaining a test statistic greater than or equal to
a critical value, not that of detecting a behavioral or psychological
phenomenon.

On a similar note, Chow (p. 128) writes that “statistical power
may be treated as an index of the a posteriori confidence of the
researcher about the statistical decision, but not as an index of the
a priori probability that H1 is true.” I know of no one who thinks
that statistical power is an indication of the probability that H1 is
true. In certain situations, one may conduct a power analysis to
assess the credibility of a statistical decision. But it should be clear
to everyone that power is the probability of obtaining a significant
test statistic given certain population values. For example, it is the
probability of finding a significant t ratio given that the samples
will come from populations with means 5m1 and 5m2 and vari-
ances 5s1 and 5s2.

Continuing that argument, Chow (p. 128) says that “[Quote 6-1]
suggests that statistical significance is reached by virtue of the
numerical index statistical power.” Several of the words in [Quote
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6-1] deserve a closer look. It says that “the sample size necessary to
detect this negligible effect with .95 probability can be deter-
mined” (my emphasis). Cohen’s (1990, p. 1309) original text was
apparently dealing with a very small effect and (1 2 b) 5 .95.
Thus, the corresponding sample size must have been quite large.
Chow seems to be criticizing Cohen’s quotation for implying that a
power analysis is being used to determine the sample size neces-
sary to “yield” a desired result (i.e., a statistically significant result)
as if the result were the product of a factory. However, the end of
[Quote 6-1] says that “if the research is carried out using that
sample size, and the result is not significant . . . the conclusion is
justified that no nontrivial effect exists.” Although I agree in part
with Chow’s criticism that Cohen seems to be attributing to power
analysis an inferential capability that it does not have, I must ask: If
one uses an unusually large sample and finds no significant effect,
can one not feel safe in concluding that the population effect size is
trivial or zero? I believe that this rhetorical question is the point
being made by Cohen. Of course, one can use a large sample size
and feel a certain amount of confidence without using power
analysis; but I suspect that Cohen’s quote may have been taken out
of context and used as an example of misguided thinking by power
analysts.

My final defense of power analysis against Chow’s criticism
pertains to Figure 6.2. To simplify my discussion, I would like to
refer to panels A and B as “stage 1” and to panels C and D as “stage
2.” Chow points out correctly that whereas power analysis is
involved with stage 1, NHSTP is involved with stage 2; and the
problem is that stage 1 has two distributions, stage 2 has a single
distribution. Thus, power analysis “misrepresents” significance
testing by implying that it is based on two separate distributions. I
wish to point out that both graphically and conceptually, power
analysis is meant to deal with a different stage in the inferential
process than NHSTP. It attempts to predict, using the information
in stage 1, the distribution of stage 2 and the outcome of the
significance test. Stage 1 is in fact part of NHSTP; stage 2 cannot
be derived without it. Thus, power analysis does pertain to a stage
of NHSTP – the stage at which distributions for each of the
competing hypotheses have been derived.

The critics rebutted: A Pyrrhic victory

Stephan Lewandowsky and Murray Maybery
Department of Psychology, University of Western Australia, Nedlands, W.A.
6907, Australia. lewan@psy.uwa.edu.au
www.psy.uwa.edu.au/user/lewan/

Abstract: We take up two issues discussed by Chow: the claim by critics of
hypothesis testing that the null hypothesis (H0) is always false, and the
claim that reporting effect sizes is more appropriate than relying on
statistical significance. Concerning the former, we agree with Chow’s
sentiment despite noting serious shortcomings in his discussion. Concern-
ing the latter, we agree with Chow that effect size need not translate into
scientific relevance, and furthermore reiterate that with small samples
effect size measures cannot substitute for significance.

Chow’s response to the many recent criticisms of hypothesis
testing is certainly timely. It is equally certain that it will fail to
convince many of the critics; not because the critics are necessarily
right, but because Chow repeatedly overshoots the mark in his
rebuttal. For example, the commendation of those who rigidly
treat p 5 .052 differently from p 5 .048 (p. 97), or some of his
scathing criticisms of meta-analysis cannot be supported. We focus
on two issues here; the critics’ claim that the null hypothesis (H0) is
always false, and the claim that measuring effect size is more
appropriate than hypothesis testing.

H0 is always false. Recall the criticism: “The null hypothesis,
phrased as a statement of no treatment effect, is seldom if ever
true in psychological research. . . . These deviations from a point
null hypothesis, however trivial, will become significant with

sufficient power.” (Hammond 1996, p. 105). Chow deals with the
criticism first by claiming that H0 is a conditional proposition
whose truth value does not depend on its consequent and anteced-
ent being true (p. 30). At the same time, he presents the null
hypothesis as both the consequent of one conditional proposition
(p. 32) and the antecedent of another (p. 32). A further statement
purports that the null hypothesis is not a “proposition about the to-
be-studied phenomenon. Instead, it is about the data-collection
procedure” (p. 32). A later clarification (p. 51) invokes chance
variation, the existence of two populations “defined in terms of
data collection procedure,” and the fact that the “two populations
. . . are identical in all aspects but one” for “a proper interpretation
of H0.” Finally, Chow suggests that “it is not inconceivable that H0
. . . is true because it may be possible to control properly the data-
collection procedure in the experimental approach” (p. 56). Now,
it is possible that all this adds up to a coherent, albeit complex view
that the null hypothesis can be true, contrary to the critics’ claim.
Alas, Chow’s unnecessarily convoluted treatment, earlier versions
of which have attracted much criticism (Anthony & Mullen 1991;
Bernieri 1991; Harris 1991; Rozeboom 1991), has obscured rather
than further clarified this issue, thus perhaps lending inadvertent
support to the critics of hypothesis testing. Lost in the mist is a
much simpler and more compelling argument about the status of
H0 that, we believe, can be stated as follows:

1. For true experiments (as defined on p. 12), the null hypoth-
esis of no difference is tantamount to postulating that the experi-
mental manipulation was ineffective.

2. Therefore, anyone who claims that the null hypothesis is
always (or nearly always) false would be committed to accepting
that, given a sufficiently powerful experiment, any (or nearly any)
experimental manipulation would yield a significant outcome.

3. Not only is this conclusion demonstrably false because even
an experiment with 25,000 subjects may fail to reject H0 (Oakes
1975, cited in Leventhal 1994), but

4. it is also questionable because the conclusion would entail
the a priori acceptance of the fact that knocking on wood will
prevent the occurrence of dreaded events, that black cats crossing
the road are better predictors of future mishaps than white cats, or
of any other superstition that can be put to an experimental test
with sufficiently large sample sizes.

Effect size over statistical significance. Hypothesis testing has
been criticized on the grounds that a numerically large effect may
escape detection because sample size is too small or, conversely,
that a trivially small effect may turn out to be significant because
sample size is sufficiently large. Some critics have therefore
advocated the use of effect size in preference to relying on the
significance criterion of hypothesis testing. On this issue, we
disagree with Chow’s radical slant towards (nearly) dismissing the
utility of effect size altogether, but we share his emphasis on
decoupling the statistical size of an effect from its scientific
relevance. His case that no single effect-size criterion exists to
evaluate research is convincing. In particular, different research
domains and different designs would require different criteria
(e.g., in a study of adult height, a 0.1 mm effect in a repeated-
measures design is probably more newsworthy than a 10 cm effect
in a between-subjects design). Moreover, even if it were possible
to select a criterion effect size specific to a domain and design,
difficulties would nonetheless arise because research often pro-
ceeds by unpacking an effect into its components. For example,
one of us (M. M.) has recently identified a priming effect with
spatial relations – accessing information pertinent to one direction
(e.g., left) primes information pertinent to the opposite direction
(right). Efforts are now being directed at dividing this effect into
(a) a general semantic priming component, (b) a component
concerning the alignment of a common spatial axis, and (c) a
component reflecting the obligatory tagging of opposite locations
or regions in space. Would our understanding in this field be
advanced by imposing an effect-size criterion that may identify the
general effect as newsworthy, but the lesser component effects as
not newsworthy? We propose that it would be more appropriate to
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note that all component effects, established by a criterion of
statistical significance, need to be accounted for by a viable
cognitive model.

Going beyond Chow’s discussion, one critical aspect of effect
size merits reiteration because it is often lost in debate, namely, the
vulnerability of effect size measures to small sample sizes. The
much-heralded property of effect size, that it is not affected by
sample size, only applies to its expected (mean) value: as with any
other sample statistic, the variability of effect size measures
necessarily increases as sample size decreases. This can be readily
demonstrated by Monte Carlo simulation (e.g., Carroll & Nor-
dholm 1975). In consequence, although a statistically nonsigni-
ficant effect can “look big,” apparent size is of little informational
value owing to the large uncertainty associated with the sample
statistic.

So we endorse hypothesis testing but our reasoning differs from
Chow’s: on the one hand, it is meaningful to test null hypotheses
because some are surely true; on the other hand, it would be
meaningless to adopt an evaluative criterion based exclusively on
effect size because, first, effect size is a sample statistic subject to
error like any other, and second, no single criterion would seem
viable even if set within a particular research domain.

When the coefficient hits the clinic: Effect
size and the size of the effect

Brendan Maher
Department of Psychology, Harvard University, Cambridge, MA 02138.
bam@wjh.harvard.edu

Abstract: The usefulness of effect-size differs in utilitarian experiments
from its use in theory corroborations. Chow introduces the question of the
relationship of effect-size to practical validity and the role of the assess-
ment of “importance” in this. This review develops this question and
suggests the actuarial table as a replacement for effect-size in practical
decision-making.

The null-hypothesis significance-test procedure (NHSTP) and the
basic concept of statistical significance has come under increasing
criticism in recent years, mainly because it is seen as leading us to
reject findings that are valid. Chow has systematically clarified the
issues and reminds us of the basic reasons why our present
procedures were developed. The focus of this review is the real
world meaning of effect size and its usefulness in decision making.
Before turning to this, we might reflect on the larger context in
which these debates occur.

Psychologists (like other professionals) have a vested interest in
demonstrating their claim to knowledge and technical compe-
tence in the field of behavior and psychological welfare of others.
Statistically significant results improve publication possibilities,
which helps academic career advancement; they appear to prove
the efficacy of psychological services and so justify the fees that are
charged for them, and so on. There is no evidence that psycholo-
gists are more or less altruistic than members of other professions,
and we may assume that when faced with alternative ways of
analyzing and presenting data there will be an understandable bias
toward the method that is likely to be most favorable to the
investigator’s interests. Any proposal to adopt statistical proce-
dures that increase the number of apparent discoveries, theory
corroborations, patients improved, or other indices of successful
application, must therefore be regarded with some caution.

Chapter 5, “Effect size and related issues” speaks to one of the
most controversial of current statistical procedures, that is, the
calculation of an “effect size.” In this review I comment specifi-
cally on Chow’s discussion of the utilitarian experiment in contra-
distinction to the theory-corroboration experiment. The utilitarian
experiment investigates practical problems, mainly the effects of
interventions designed to change a client’s behavior. Here the
magnitude of an effect size becomes informative only when

translated into its practical validity, that is, the real-life conse-
quences of the intervention.

Chow (p. 96) presents the well-known example cited in Rosnow
and Rosenthal (1989) in which numerically small differences were
found in the rate of myocardial infarction (MI) in a group taking
aspirin and another taking placebo. Although the effect size of the
difference was only .034, this translated into a survival rate in the
aspirin-treated group that was 3.4% higher than that in the control
group. Rosnow and Rosenthal comment that this has implications
that are “far from unimpressive.” Given that MI is frequently fatal,
the comment is justified. The cost of aspirin is small and the
possible benefit is life rather than death. Chow recognizes this, but
points out that the criteria for what is “impressive” are not defined,
and that it is not at all clear how such judgments are to be made
objectively. He is right in this, but does not address the core issue,
which is are there alternative statistical procedures that might help
the client make practical decisions? Chow has given us the basis
for developing possible answers; it would have been interesting to
see him pursue it further.

Rosnow and Rosenthal’s example is a double-edged sword.
Small effect sizes may have large practical implications, and large
effect sizes may have trivial practical implications. The relevance
of the magnitude of an effect size cannot be assessed by looking at
it. It is unfortunate that the word “effect” is used at all in labeling a
computation that tells us nothing about the concrete effects
produced by an intervention. Cost-benefit analysis offers an im-
proved basis for the estimate, but the computation of both sides of
the equation is plagued by the difficulties attendant on the
creation of a quantitative measure of the “utility” of psychological
costs and benefits. This is an assessment that the clients can make
for themselves and statisticians cannot.

In the light of all this, perhaps we should consider the wisdom of
translating any effect size in a utilitarian experiment into an
actuarial table of real-world consequences. If, for example, we find
that in a comparison of psychotherapy versus placebo in treating
depression an effect size of 1.0 actually represents an average
reduction of two points on a self-report depression scale, we need
to know a great deal more about what that means in terms of
genuinely important outcomes, such as changes in insomnia,
appetite, days in or out of hospital, and so on. If these are
negligible, the change in the scale score is basically irrelevant, no
matter how large the computed effect size.

We also need to know how many individual patients in each
group showed improvement in the direction implied by the
difference between group means, and what was the distribution of
given magnitudes of gain, including zero gain or losses. We need to
know whether and how reliably these differences in individual
outcome are related to such factors as current age, gender,
education, age of onset, length of illness, and so forth. If they are to
make rational decisions, people who are deciding to invest time
and money in an intervention need such a table, not a single-
quantity effect size.

Individuals also need to know the probability that an actuarial
table, based on data already accumulated, is likely to continue to
apply to new clients coming from the same general population. In
the utilitarian experiment findings that fail to reject the null
hypothesis means that any actual difference between the groups
cannot provide a reliable basis for choosing one alternative over
the other. Here the appropriate significance test provides the best
estimate of the stability of the table. It cannot determine whether
it is better for an individual to make a choice on an unreliable basis
than on no basis at all. In practical terms, this is equivalent to
saying that the alpha level for personal “significance” is set by the
client but knowledge of the p values is a crucial element in the
decision and there is no better substitute available.

All of these implications are inherent in Chow’s remarkably
clear exposition. Readers will be able to develop them quite
readily.
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Some problems with Chow’s problems with
power

Deborah G. Mayo
Department of Philosophy, Virginia Polytechnic Institute, Blacksburg, VA
24061. mayod@vt.edu.

Abstract: Chow correctly pinpoints several confusions in the criticisms of
statistical hypothesis testing but his book is considerably weakened by its
own confusions about concepts of testing (perhaps owing to an often very
confusing literature). My focus is on his critique of power analysis (Ch. 6).
Having denied that NHSTP considers alternative statistical hypotheses,
and having been misled by a quotation from Cohen, Chow finds power
analysis conceptually suspect.

Standard statistical testing (null-hypothesis significance tests and
Neyman–Pearson methods), while widely used in diverse sci-
ences, have been the subject of considerable criticism and contro-
versy among philosophers (especially Bayesians) and others.
There is no doubt that these methods are in need of defense from
someone who can clarify the complex issues and disentangle the
disagreements and confusions involved, especially in the psycho-
logical literature.

Chow’s book (1996) raises a number of important and correct
points against critics: many of the criticisms, Chow rightly notes,
are based on confusing statistical inference with substantive in-
ductive and scientific inference, on poorly designed or misin-
terpreted tests, and on a misplaced desire for a probability that
these methods are not designed to supply: a posterior probability
of a hypothesis. Chow is at his best when emphasizing what critics
tend to overlook: that statistical tests concern hypotheses about a
sampling distribution (e.g., of a test statistic), that such hypotheses
must be distinguished from what he calls experimental and re-
search hypotheses, and that the result of statistical testing must be
distinguished from corroborating a scientific hypothesis, although
progress toward theory corroboration may be afforded by combin-
ing sufficiently numerous and probative statistical tests. Correct
too is Chow’s distinction between the context of theory corrobora-
tion in science and the Bayesian context. These ideas warrant
further attention. But first Chow should rethink the version of
standard statistical testing theory worthy of being defended.

Null-hypothesis statistical-testing procedure, NHSTP. NHSTP is
the hybrid of Fisherian and Neyman-Pearson (NP) tests that
Chow imagines practitioners use, and it is the one he is defending.
Although the essential contribution of NP theory was the intro-
duction of alternatives to the null hypothesis and the correspond-
ing power function – Chow discards this from NHSTP (e.g.,
“Fisher was correct not to consider Type II error because it plays
no role in NHSTP,” p. 43). What Chow keeps from NP theory is
the conception of a test as a decision procedure to reject or accept
a null hypothesis (of chance) according to whether data reach a
preset critical value of a test statistic. To some, it might seem as if
Chow’s NHSTP ejects the best parts of each approach.1 Given this
view of tests, it is not surprising that Chow finds the notion of
power problematic.

Chow’s critique of power analysis. Chow faults the field of
power analysis for two reasons: (1) “The a priori probability of
obtaining statistical significance is said [by power analysts] to be
given by the power of the test” (p. 131) but this is false; and (2)
NHSTP is restricted to only the null hypothesis H0, but power
analysis depends upon alternative statistical hypotheses. Chow’s
charges against power analysts accordingly boil down to arguing
first, that a power calculation does not give an unconditional
probability (of a statistically significant result) and second, that the
calculation of power is impossible for an account that excludes
alternative statistical hypothesis. Both charges are correct, yet they
are not damaging to a correct use and interpretation of power in
standard Neyman-Pearson testing. I will take these up in turn:

1. Chow is misled throughout by an unfortunate quote from
Cohen (1987, p. 1) that “The power of a statistical test is the
probability that it will yield statistically significant results” (Chow’s

emphasis; quote 6-2 on p. 120). Thus, Chow charges that in power
analysis, “the power of the statistical test is treated as the proba-
bility of H1 being true (by virtue of the fact that it represents, to
power analysts, the probability of obtaining statistical signifi-
cance)” (p. 124). Chow seems also to be confusing (or alleging that
the power analyst confuses) the probability a test correctly rejects
H0 and accepts H1, with the probability that H1 is true. Anyone
who treats power as either the probability of a significant result or
the probability of H1 is justly castigated by Chow – but does
anyone commit such egregious errors?

2. According to Chow (p. 132), the probability of a Type II error
should be defined as (i) p(Accept Chanceunot-H0) while in power
analysis it is defined as (ii) p(Accept ChanceuH1). But (i) is not
defined in NP theory unless not-H0 is a point hypothesis, and since
Chow’s NHSTP excludes such alternatives it is not surprising
Chow concludes that “it is impossible to represent statistical
power graphically in the sense envisaged in power analysis without
misrepresenting NHSTP” (p. 137). But if so, then it is NHSTP that
forces a nonstandard interpretation of the probability of a Type II
error. For Chow, (i) refers to the probability that the test Accepts
H0 when some (substantive) nonchance factor is really responsible
– a calculation which he admits a statistical method cannot supply.
We are not told why such a nonstandard notion should be pre-
ferred to the standard statistical one, nor why we should oust
alternative statistical hypotheses from our methodology of testing.

Moreover, since power analysts are working within NP testing
theory where it is entirely appropriate to consider the power of a
test to reject H0 for various different point alternatives – that is,
power curves – Chow’s criticism misses its target.

By restricting himself to the single hypothesis of the Fisherian
test, Chow’s defense of NHSTP is forced to accept an overly
limited role for statistical analysis: “NHSTP answers the question
as to whether or not there is an effect. However, it is not
informative about the magnitude of the effect.” (p. 7). In fact,
considering a test’s ability to detect alternatives can provide
information about the magnitude of the effect that is or is not
indicated by a statistical result. For example, if a test had a high
[low] power to detect an effect of a magnitude specified in H1 then
failure to reject the null hypothesis (of 0 effect) would be a good
[poor] indication that the magnitude of the effect was less than H1
asserts. Thus, power considerations offer a good way to scrutinize
the meaning of statistical results,2 and Chow has given us no
reason to abandon them.

Chow overlooks the fact that, although his one-sided tests may
be articulated with reference to the null hypothesis alone, their
justification as good or best tests had to be derived by considering
alternative statistical hypotheses (e.g., as in deriving uniformly
most powerful tests). Chow’s NHSTP tests are cut off from their
logical foundation in NP theory.

An error regarding the goal of NP statistics. On pp. 21 (Table
2.3), 23, 42, and elsewhere, Chow asserts – quite erroneously –
that the probability of interest in NP statistics is “the inverse
probability, p(HuD)” (p. 21) and declares that “the Neyman–
Pearson preference for the inverse probability” is not consistent
with the mathematical foundation of NHSTP (p. 42). Indeed, such
an NP preference would also be inconsistent with NP theory
(which was designed for cases where no such inverse probability
was even meaningful)! Chow’s mistake, if uncorrected, will only
supply further grist for the Bayesian mills which regularly accuse
NP theory of unsoundness (alleging it to be interested in posterior
probabilities while supplying only error probabilities).

NOTES
1. My own preference would be to reverse what gets ejected: to retain

the NP use of alternative hypotheses while replacing the decision-
theoretic interpretation of tests with an inferential one. Power calculations
are needed to specify tests, but to infer what is and is not indicated by a
specific result may be achieved by calculating error probabilities using that
result (rather than a preset cut-off ). Suppose, for example, that the p-value
observed is not small and so H0 is “accepted.” To interpret this one might
calculate, not the usual power of the test against an alternative H1, but
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rather, the probability of a result more significant statistically than the one
obtained given H1. How this relates to using tests inferentially is discussed
in Mayo 1996.

2. An analysis sensitive to the specific value of the result is also possible
(see N. 1).

Significance tests cannot be justified in
theory-corroboration experiments

Marks R. Nester
Queensland Forestry Research Institute, MS 483, Fraser Road, Gympie,
4570, Australia. nesterm@qfril.se2.dpi.qld.gov.au

Abstract: Chow’s one-tailed null-hypothesis significance-test procedure,
with its rationale based on the elimination of chance influences, is not
appropriate for theory-corroboration experiments. Estimated effect sizes
and their associated standard errors or confidence limits will always
suffice.

I have read 160 pages of Chow’s book, including the preface but
excluding Chapter 7. On those pages I have annotated 194
comments, queries, and criticisms and so this brief commentary
will outline only some of my thoughts.

1. Yes, Chow’s book does contain a few factual errors and
careless remarks, though I regard them as irritating rather than
disastrous for Chow’s thesis. For example, contrary to p. 8, statisti-
cal significance is considered by many to be extremely likely,
rather than “assured,” if a large enough sample is used. If the first
sentence of section 2.7.2, p. 35, is taken literally, then it is
nonsense. If I am correctly guessing Chow’s intention here then
the notion of approximation should be associated with the central
limit theorem. The complements of the research and experimen-
tal hypotheses presented in Table 3.1 on p. 47 are not true
complements. On p. 181 Chow insists that asking about the
magnitude of an effect is a “pragmatic consideration” rather than a
“statistical concern.” This is an extraordinary claim when one
considers how much effort statisticians have devoted to obtaining
estimates of parameters.

2. On p. 11, Chow reports that “submission to statistical author-
ity” may be a contributing factor in “the continual reliance on
NHSTP [null-hypothesis significance-test procedure].” I am com-
pelled to dismiss this idea by quoting one of the early statistical
authorities, Yates (1951, p. 32), who not only condemned some of
his fellow statisticians because of their obsession with significance
tests but also stated: “scientific research workers . . . pay undue
attention to the results of the tests of significance . . . and too little
to the estimates of the magnitude of the effects they are investigat-
ing.” The argument that utilitarian experiments were foremost in
Yates’s mind will be rendered obsolete below.

3. Table 6.1 and the associated discussion on pp. 140–41
represent a flawed approach to testing a theory (substantive
hypothesis). Chow states that NHSTP is used at each stage of a
falsification process. It seems to me that the more stages there are
then the more likely it is that one of the NHSTPs will lead to the
rejection of an experimental hypothesis and indirectly to the
rejection of the theory. This is fine for those who believe all
theories are wrong. On the other hand these people do not need to
test any theories. In practice, it may be necessary to accept a
theory tentatively, irrespective of the outcome of any NHSTP.
Chow might agree with this! Chow expects a falsification process
to be based on the NHSTP; he demands that alpha levels be
strictly enforced (e.g., p. 97); but states (on p. 92) that “research
conclusions . . . are not accepted or rejected on the sole basis of
statistical significance.”

4. I support some of Chow’s condemnations of the occasional
sloppy thinking used by critics of NHSTP. It is true that effect size
per se is not a measure of evidential support for a statistical
hypothesis, let alone for a substantive hypothesis. However, I do
believe that the effect size and its corresponding standard error (or

confidence limits) together may provide some measure of support
for a statistical hypothesis – thus the larger the effect size and the
smaller its standard error, the stronger the evidence.

5. One fact Chow missed is that there is a utilitarian experiment
inside every theory-corroboration experiment. With regard to the
phenomenon of linguistic competence described in Table 3.1,
p. 47, surely it would be interesting to know the number of words
which can be recalled after negative and kernel sentences. This
may, for instance, have application in communications between
pilots and control towers. No harm can come from reporting these
magnitudes and their associated standard errors or confidence
limits. It is even possible that one day there will be psychological
theories which will yield quantitative predictions, and then the
publishing of estimated magnitudes will have been justified.

6. There are several different experimental hypotheses which
can be associated with a particular theory. If the true magnitudes
of the effects associated with each experimental hypothesis are
known or accurately estimated, then it is possible for each of us to
make a subjective assessment of the importance of the theory. This
is different from evidential support. Thus, with regard to linguistic
competence and Chow’s particular experimental hypothesis, sup-
pose that the intrinsic utilitarian experiment reveals that 4.1 words
can be remembered, on average, after a kernel sentence and only
3.9 words after a negative sentence. I personally would not care
which theory explained linguistic competence because I regard
the number of words which can be remembered as being quite
similar. Furthermore, I would allocate low priority to the search
for such a theory.

7. The effects estimated in the intrinsic utilitarian experiment
can still be used in Chow’s three embedding syllogisms, Table 4.2,
p. 70, with no loss in “objectivity” by substituting 95% confidence
limits, say, for the 5% NHSTP. This renders the NHSTP unneces-
sary.

8. Consider the linguistic competence phenomena and develop
an experimental hypothesis from some hypothesized theory. In
Chow’s case, the experimental hypothesis deals with numbers of
words which can be remembered. Now reflect that there may be
many alternative theories which can explain the results of the
proposed experiment. By merely considering the direction (sign)
of an effect we can simultaneously confirm or reject many theo-
ries. Thus, if the experiment indicates that more words can be
remembered after kernel sentences, then all theories which imply
otherwise can be rejected. Similarly, if we discover that more
words can be remembered after negative sentences, then the
rejected theories in the first case become the accepted ones. Thus
in order to discount a whole range of theories all we need to know
is the direction of an effect. Careful study of Chow’s one-tailed
NHSTP with its rationale based on the elimination of chance
influences (e.g., pp. 31–32, 36, 37, and 175) reveals that the
NHSTP is not designed to estimate the direction of an effect! Why
not just estimate and report the effect itself?

On a personal level I must congratulate Chow on a valiant,
sincere, generally well-written and sometimes clever attempt at
justifying the continued use of the NHSTP in special circum-
stances. On a professional level I hope no one else reads this book.
I fear that the scientifically or statistically naive will be over-
whelmed by Chow’s confident and occasionally superficially con-
vincing arguments.
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Significance testing – does it need
this defence?

Günther Palm
Department of Neural Information Processing, University of Ulm, D-89069
Ulm, Germany. palm@neuro.informatik.uni-ulm.de

Abstract: Chow’s (1996) Statistical significance is a defence of null-
hypothesis significance testing (NHSTP). The most common and straight-
forward use of significance testing is for the statistical corroboration of
general hypotheses. In this case, criticisms of NHSTP, at least those
mentioned in the book, are unfounded or misdirected. This point is driven
home by the author a bit too forcefully and meticulously. The awkward and
cumbersome organisation and argumentation of the book makes it even
harder to read.

Statistical significance by Chow (1996) is a defence of null-
hypothesis significance testing. When I started reading the book, I
was surprised not only that this ubiquitous procedure had to be
defended at all, but also about the strangely tense tone of this
defence. Having worked through the book, I fully agree with (most
of ) the opinions of the author, but my impression is that the case
for significance testing could have found a better advocate. The
problem is mainly the style of the book. The wording is sometimes
strange; for example, the colloquial use of the adjective “wanting”
or the use of “efficacious” instead of “effective.” The sentences are
often clumsy and complicated. Most of the various tables in the
book are more confusing than helpful. And the book is much too
long: the main arguments are repeated too often against the
various slightly different angles of putative or real criticism. Also
the abbreviation of “NHSTP” for the central subject of the book is
not very attractive.

The book begins by presenting the main points of criticism
directed against NHSTP. The most important ones are:

(1) One should report more data that entered the statistical
analysis instead of just reporting the significance of the outcome.
Here I basically agree that it cannot hurt to display these data
(means and standard-derivations of measurements, obtained p-value).

(2) The null-hypothesis H0 is never exactly true. I don’t quite
understand this argument. It may simply be the objection that the
experimenters have chosen an easy-to-falsify null-hypothesis to
simplify their task.

(3) The choice of the significance criterion (e.g., 5% or 1%) is
arbitrary. This is obviously true, but in many disciplines there is a
general agreement about the proper significance value.

(4) The significance probability p obtained from the statistical
analysis is often misinterpreted.

(5) The so-called Type II error is not considered, and some-
times erroneous conclusions are drawn from insignificant results.
Like the last point, this is a criticism of some incorrect applications
of significance testing rather than of the procedure itself. In a
typical application of NHSTP one simply cannot determine the
probability of the Type II error and one cannot draw any conclu-
sions from an insignificant result. Hence the choice of the word
“significant.”

Chow’s general line of argument against these criticisms is
simply that they are criticisms against some incorrect applications
of NHSTP rather than against NHSTP itself. In exemplifying and
clarifying this point, the author could give some useful advice on
the proper use of significance testing at least in the process of
theory corroboration. But instead he produces a meticulous and
tiring defence against criticisms of NHSTP.

The core of Chow’s argumentation is the prototypical use of
significance testing in theory corroboration. This argument bears
some meta-scientific overtones which I do not share with the
author, so I will redescribe it in my own words. In the post-
Popperian spirit that has been generally adopted in the scientific
community, it goes without saying that a theory cannot be verified,
it can only be falsified experimentally. Since the goal of a research
group obviously cannot be to falsify their own theory, they try to
“corroborate” it, essentially by falsifying a different theory. Some-

times (but rarely) there are indeed two conflicting theories. More
often, one has to make a reasonable prediction based on generally
accepted background knowledge and common sense which is at
variance with the to-be-corroborated new theory, and one falsifies
this prediction by an appropriate experiment. If this falsification is
only probabilistic, it is normally demonstrated by significance
testing.

Logically this means that background knowledge B implies the
null hypothesis H0, which provides a probability distribution of
some outcome (or test-statistic) T with expectation 0. The new
hypothesis N, however, implies that T . 0. After the experimental
result that T 5 t, one calculates the probability p 5 prob[T $
tuH0], and if p is sufficiently small one consideres H0 to be
probabilistically falsified, therefore H1 and consequently N is
corroborated.

The amount of evidence obtained for the theory N depends on
the tightness of the implication N → H1 and on the smallness of p.
In most actual cases it depends more strongly on the tightness of
the implications and on the design of the experiment than on the
smallness of p. It appears that criticisms of NHSTP are sometimes
really directed against the inductive method of theory corrobora-
tion or against the tightness, or even the correctness of the
implications involved in specific experiments.

With respect to Bayesian criticism of NHSTP, Chow starts with
a strange example (p. 146), which I did not quite understand.
Instead, I find it useful to distinguish four kinds of problems (this
distinction is perhaps made implicitly but unfortunately not ex-
plicitly in the book): the problems of corroboration of versus
decision between general versus specific hypotheses. These four
cases differ mainly in the knowledge that one may assume about
the probabilities involved: p(H0), p(H1), the a priori probabilities
of the two hypotheses, p(TuH0), p(TuH1), and the probability
distribution of the test-value T under the two hypotheses, H0 and H1.

The prototypical case of theory corroboration treats the prob-
lem of corroboration of a general hypotheses (i.e., a “theory”). In
this case one knows only p(TuH0), so NHSTP is the only reason-
able statistical procedure. In the much rarer case of a decision
between two theories, one may know p(TuH0) and p(TuH1), but
usually there is no intersubjective way of determining p(H0) and
p(H1). In this context it may be doubted whether the concept of
probability of scientific theories makes sense at all. Thus, the use
of Bayes’s formula to get from p(DatauH1) to p(H1uData) may give
unreasonable results.

On the other hand, in the case of a decision between two
specific hypotheses – for example, in some medical applications
where one has to decide based on statistical tests whether or not a
specific person has a specific illness – one often knows all the four
probabilities. In this case one should certainly make use of them
and try to determine P(H1uData).

Finally, in the case of corroboration of a specific hypothesis, as
in some legal cases or medical applications, the problem is to
corroborate the well-founded opinion that a specific person has a
certain illness or has committed a certain crime. In this case,
different people may have different subjective probabilities, p(H0)
and p(H1); one typically has agreement on p(TuH0), but one often
does not really know p(TuH1). In most actual situations of this type,
it is probably best to resort to the argumentation of theory
corroboration, that is, NHSTP.

Chow devotes a substantial part of the book to making a further
distinction in the case of corroboration of a general hypothesis.
This has to do with the question of whether the general hypothesis
is a consequence of a theory (as in N → H1 above) or a more
practical statement (which the author calls “utilitarian”) for exam-
ple, that a certain treatment has an effect on T. This provides a
different context and motivation for doing the statistical test, but in
my view it does not change the interpretation of the result. This
distinction introduces several additional controversial problems,
such as the author’s distinction between experiments, quasi-
experiments and non-experiments (p. 91), which in my view only
confuses the main issue.
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In summary, the book is essentially an elaboration on the point
that there is really nothing to defend NHSTP against. If one agrees
with this, one should not read the book.

Some statistical misconceptions in Chow’s
Statistical significance

Jacques Poitevineau1 and Bruno Lecoutre2

1LCPE, C.N.R.S., 92120 Montrouge, France. jacques.poitevineau@ens.fr.
2C.N.R.S. et Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France.
bruno.lecoutre@univ-rouen.fr http:/ /epeire.univ-rouen.fr/labos/eris

I know of no field where the foundations are of such
practical importance as in statistics.

(Lindley 1972)

Abstract: Chow’s book makes a provocative contribution to the debate on
the role of statistical significance, but it involves some important miscon-
ceptions in the presentation of the Fisher and Neyman/Pearson’s theories.
Moreover, the author’s caricature-like considerations about “Bayesianism”
are completely irrelevant for discarding the Bayesian statistical theory.
These facts call into question the objectivity of his contribution.

Frequentist theories. In presenting current practices (NHSTP),
Chow rightly refers to the “hybridism” of Fisher and Neyman/
Pearson’s theories; this was identified long before Gigerenzer
(1993), although this particular term was not used: see, for exam-
ple, Morrison and Henkel 1970, p. 7. But to say that these authors
may be responsible for the hybridism because they “sometimes
changed positions” and “incorporated their opponent’s ideas”
(p. xi) is far from the truth, since their basic theories evolved little.

Chow rightly emphasizes that a, b, and p are conditional
probabilities in the frequentist framework. This follows from the
fundamental mathematical notion of sampling distribution (condi-
tional on the parameters). But, with regard to this distribution, the
assertion that “the standard error of the mean . . . is . . . s/un if s is
not known” (p. 27) is nonsense, since s is in this case a random
variable that varies from one sample to another.

Fisher. Nothing is said about Fisher’s concepts of probability,
which are of direct importance for the objectives Fisher assigned
to statistical methods. If, in early writings, he effectively men-
tioned the idea of a “conventional a” (Chow’s Table 2.3, p. 21, line
9), he later came to repudiate any systematic predetermined level
of significance (Fisher 1956/1990, p. 45). Moreover, he argued
against the interpretation of p as the relative frequency of error
when sampling repeatedly in a same population (Fisher 1956/
1990, pp. 81–82).

Last, contrary to what Chow implies, Fisher was evidently
interested in p(HuD) (although this probability cannot, of course, be
identified with p) as it emerges from his work, not only on the
fiducial theory (e.g., Fisher 1935b; 1956/1990), but also on the Ba-
yesian method (a fact often ignored) in his last years (Fisher 1962).

Neyman/Pearson. It is first rather surprising that the single
reference is the (Neyman & Pearson) 1928 paper that presents
only the premises of their theory. In Neyman’s own words: “Our
first paper on the subject was published in 1928, over twenty years
ago. However, it took another five years for the basic idea of a
rationale theory to become clear in our minds.” (Neyman 1952,
p. 58). Actually, some verbal formulations in the introduction of
this paper could be misleading, and above all the concept of
statistical power did not appear. Relevant references are the 1933
papers (Neyman & Pearson 1933a; 1933b).

Contrary to what is indicated in [Table 2.3, line 5], the proba-
bility of interest is not “the inverse probability, p(HuD).” Neyman
and Pearson devised a precise method which is independent of the
prior probabilities p(H) and hence cannot say anything about
p(HuD) (Neyman & Pearson 1933b). Moreover, as a radical
frequentist, Neyman later came to discard p(H), and consequently

p(HuD), when it could not be assigned a frequentist meaning
(Neyman 1950; 1952).

Also H0 is not “the hypothesis of zero difference” (Table 2.3,
p. 21, line 6); on the contrary, it should be the hypothesis of
interest, the one for which it is more important to avoid error. This
fact is clear and more than implicit, even in the 1928 paper; and it
was firmly stressed by Neyman (Neyman 1950, p. 263). Conse-
quently, H1 is not “the substantive hypothesis itself ” (Table 2.3,
line 7) but the challenging one.

Moreover, “Multiple H1’s” (Table 2.3, line 8) are not necessarily
assumed. The alternative hypothesis (and also H0) may be simple
as well as multiple. More important again is the fact that H0 and
H1 are always assumed to be mutually exclusive and exhaustive
(what Chow considers to be only a Fisherian feature), so that “not-
H0” is really equivalent to H1 (or H1’s), contrary to Chow’s claim
(p. 132). Thus it cannot be said that “the identity of the non-null
hypothesis (viz., not-H0) is not known” (p. 186). Even in the case of
a multiple hypothesis (e.g. m . 0), the possible values of the
parameter under the alternative hypothesis are perfectly known
(e.g., the strictly positive part of the real line). What is indetermi-
nate is only the knowledge of the true value.

It is basically nonsense to say that “the meaning of ‘Type II
Error’ is changed when statistical power is introduced” (p. 131).
The concept of statistical power was introduced by Neyman and
Pearson as the complement of type II error (Neyman & Pearson
1933b), and plays a basic and explicit role in their theory (a
Neyman-Pearson’s test consists of building a critical region that
minimizes b, or equivalently that maximizes power, for a fixed a).
Power, with regard to any simple hypothesis Hi, is the probability
that the test statistic falls into the critical region (given that Hi is
true), and is consequently equivalent to 1 2 bi (bi denoting the
probability of committing a type II error given Hi). In the case of
multiple Hi’s, power can be calculated for each of the simple
hypotheses (which is perfectly determined, as indicated earlier),
thereby leading to the well-known power function.

Concerning the implicit appeal to TSD by power analysts (Ch.
6), Chow seems to be unaware that it is signal detection theory that
drew upon Neyman-Pearson’s theory (Green & Swets 1966, p. 1),
and not the reverse.

Last, Chow forgets to report the fact that the sample size N must
be fixed a priori (before experiment); and, curiously enough, he
does not mention the criticisms raised about the “decision charac-
terization” of the Neyman-Pearson’s theory (e.g., Rozeboom 1960).

Statistical Bayesian theory. Chapter 7 is only Chow’s personal
views about “Bayesianism.” This has nothing to do with the rational
statistical Bayesian theory, and is consequently completely mislead-
ing. Chow ignores the foundations of Bayesian statistics and
appreciable theoretical developments that are ever more strongly
challenging the frequentist approach in all domains (for recent
accounts, see in particular Bernardo & Smith 1994; Robert 1995),
including the related methodological debates peculiar to medicine
(e.g., see Ashby 1993). Moreover, realistic uses of Bayesian
methods for analyzing experimental data have been proposed (e.g.,
Spiegelhalter et al. 1994; Lecoutre et al. 1995; Rouanet 1996).

Null-hypothesis tests are not completely
stupid, but Bayesian statistics are better

David Rindskopf
Educational Psychology, City University of New York Graduate Center, New
York, NY 10036. drindsko@email.gc.cuny.edu

Abstract: Unfortunately, reading Chow’s work is likely to leave the reader
more confused than enlightened. My preferred solutions to the “contro-
versy” about null- hypothesis testing are: (1) recognize that we really want
to test the hypothesis that an effect is “small,” not null, and (2) use Bayesian
methods, which are much more in keeping with the way humans naturally
think than are classical statistical methods.
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As I read Chow’s précis, I felt confused: Did I not understand the
author, or did the discussion contain major errors and misunder-
standings? Unfortunately, after re-reading the précis and reading
the book, I concluded that the latter was the case. I wish I could say
more positive things about the book, but more is wrong or
misleading than is right. Although I agree with some of the author’s
statements (e.g., that null-hypothesis tests can be defended), I
disagree with most of his conceptualization of the problem and
most of his reasoning. A full critique would take too much space,
and would be unnecessary. Instead, I will give a few examples, and
then briefly summarize my position about hypothesis testing.

For a book that is mainly concerned with a discussion of null-
hypothesis tests, it is surprising that it does not begin with a
definition of “null hypothesis.” To most statisticians, the null
hypothesis is a statement that some parameter is equal to zero.
That is why the term “null” applies: null means zero, as in zero
effect, or zero relationship. But Chow’s main example concerns a
directional hypothesis, so most of his discussion is irrelevant to the
usual arguments about problems with null-hypothesis tests.

Why should null (i.e., zero) hypotheses be of such importance?
Occam’s Razor provides the answer. A scientific theory should be
no more complex than is necessary to explain the observed facts.
Therefore, until there is clear evidence that a treatment is effec-
tive, or that a relationship between two variables exists (as two
examples), one should act as if there were no effect. The simplest
theory, that nothing has an effect, is only rejected after evidence to
the contrary.

Now let me turn to Bayesian statistics, where Chow’s discussion
and example are tortuous. The example he uses, insofar as it is
comprehensible at all, is clearly wrong: he has prior probabilities
for three alternatives as .5, .6, and .4; the probability that one of
these will occur is therefore .5 1 .6 1 .4 5 1.5. Even beginners in
probability can see that there is a problem here.

As final examples, consider some statements in Chow’s sum-
mary and conclusions section of the Précis:

1. “[B]eing a conditional probability, statistical power cannot be
the probability of obtaining statistical significance.” No sensible
person has ever claimed that anyway.

2. “As there is a Bayesian overtone in power analysis, power
analysis can be questioned to the extent that the Bayesian assump-
tions about research methodology are debatable.” No one else
sees a Bayesian overtone in power analysis, so the conclusion is
unwarranted.

3. “The Bayesian approach has a very limited applicability in
psychological research because it is applicable only to the sequen-
tial sampling procedure.” Another incorrect statement, and there-
fore an invalid conclusion.

So what is the correct attitude about null hypothesis tests? First,
most people do not believe that any effect is exactly zero. Instead,
they are trying to choose between two alternatives: (1) The effect
is so small that it is unimportant, or (2) the effect is large enough to
be important. Therefore, researchers really want to test the
“small,” not null, hypothesis. As long as they follow the usual rules
of applied statistics, they will not go wrong: an effect should be
declared significant only if it is both statistically significant and
large enough to be of practical importance. (Further details on my
views about this are in Rindskopf 1997.)

But even though null hypothesis tests are not so bad if properly
done, there is a better approach for most problems in statistics:
Bayesian methods. To see how natural Bayesian methods are,
consider the following interpretation of a confidence interval:
“There is a 95% chance that the parameter is in this interval.” In
classical statistics, this is an erroneous statement, but all teachers
hear this interpretation from most of their pupils every semester.
In Bayesian statistics, this is the correct interpretation of a 95%
credible interval, which can often be calculated in the same way as
a classical statistician’s 95% confidence interval. Bayesian statistics
is about using information (from data) to modify beliefs about
unknown quantities (parameters). We start with prior beliefs,
which can be very vague (uninformative) if we have little informa-

tion about a situation before gathering data. After gathering data,
we modify our beliefs to arrive at posterior beliefs (technically, a
posterior probability density).

Once we have our posterior beliefs, we can either summarize
them in various ways, or use them to make decisions, along with
information about the costs and benefits (utilities) of various
actions. One simple summary that would be informative is to
decide how big an effect would have to be in order to declare it of
practical importance, and then calculate the probability that the
effect is at least that large. For example, one would be able to make
a statement such as: “There is a 5% probability of a large negative
effect, a 20% probability that the effect is small, and a 75%
probability of a large positive effect.” These calculations and
interpretation can only be done in Bayesian statistics; such an
interpretation does not make sense in classical statistics. (Again,
further details are in Rindskopf 1997.)

Finally, some suggested reading for those interested in compar-
ative statistics (i.e., a comparison among different approaches to
statistical inference). Two reasonably simple books are those of
Barnett (1982) and Oakes (1986). At a higher level of abstraction,
Silvey (1975) provides an overview of the major approaches to
statistical inference.

Meta-analysis, power analysis, and the null-
hypothesis significance-test procedure

Joseph S. Rossi
Cancer Prevention Research Center and Department of Psychology,
University of Rhode Island, Kingston, RI 02881.
kzp101@uriacc.uri.edu www.uri.edu/research/cprc/

Abstract: Chow’s (1996) defense of the null-hypothesis significance-test
procedure (NHSTP) is thoughtful and compelling in many respects.
Nevertheless, techniques such as meta-analysis, power analysis, effect size
estimation, and confidence intervals can be useful supplements to NHSTP
in furthering the cumulative nature of behavioral research, as illustrated
by the history of research on the spontaneous recovery of verbal learning.

Chow (1996) raises many compelling points in defense of the null-
hypothesis significance-test procedure (NHSTP) and I am sympa-
thetic to much of what he has to say. In particular, some of the
arguments made by critics of NHSTP are long overdue for critical
examination. For example, as I am frequently engaged in the
conduct of large randomized clinical trials of behavioral interven-
tions for health promotion and disease prevention, I could only
wish that the null hypothesis was, in fact, never true! Chow
reminds us that NHSTP is but one step in the research process,
and not necessarily the most important one. The sequence of
deductive and inductive logic and the establishment of proper
experimental controls provides the crucial foundation on which
inference and knowledge are based within the context of research
design. No degree of reliance on meta-analysis, power analysis,
effect sizes, confidence intervals, or NHSTP itself for that matter
will alter the tentative nature of the logic on which the conclusions
of an experiment are based.

And yet the consensus of methodological expertise for the
past four decades is that reliance on NHSTP has failed to pro-
duce a cumulative science, a position well-articulated by Meehl
(1978) and others. Chow’s position seems to be that if we would
only get back to rigorous adherence to the underlying logic of
experimental design, all would be well. Although I certainly
endorse such adherence, I do not believe it will be sufficient.
Effect size indices and confidence intervals along with tech-
niques such as meta-analysis and power analysis can surely be
used to enhance NHSTP, and not only for utilitarian experi-
ments, which Chow occasionally seems to admit, but for theory-
corroboration experiments as well.

An interesting case is provided by the history of theory-
corroboration research on the spontaneous recovery of verbal
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associations (Rossi 1990; 1997). Researchers in this field were no
less meticulous than Sperling (1960) and others in the work on
iconic storage described by Chow as an illustration of well-
controlled experimental research. Yet 20 years of NHSTP-
prescribed research (c. 1948–1968) did not result in clear con-
sensus or rejection of the existence of spontaneous recovery.
Instead, there was continued controversy concerning the phe-
nomenon, with some studies showing the effect and others not,
until researchers eventually lost interest and moved on to other
topics. Meta-analysis and power analysis can be helpful in under-
standing what happened.

The interference theory of learning predicted the existence of
spontaneous recovery but gave researchers no indication of the
size of the effect. In any event, it was not the custom to select
sample sizes based on expected effect size or on statistical power
considerations. Instead, laboratory tradition dictated the number
of subjects that would be run, much as in the iconic storage
research. Traditional sample sizes served well in the investigation
of strong phenomena easily brought under experimental control,
such as proactive and retroactive inhibition. But spontaneous
recovery was a more subtle phenomenon. Meta-analysis of sponta-
neous recovery studies indicated an average effect size (d) of 0.39
(95% confidence interval 5 0.27–0.48). Using this as the expected
effect size, the average power of spontaneous recovery studies was
.38 (alpha 5 .05). Not surprisingly, this figure agrees well with the
proportion of spontaneous recovery studies that were statistically
significant (p , .05): .43. Assuming the effect to be of a magnitude
similar to that of other laboratory phenomena in the study of
human learning resulted in the selection of sample sizes too small
to show the effect consistently.

Given the extent to which researchers in this field attended to
issues of experimental control, it is not surprising that there was a
great deal of confusion and dismay over these results. The issue is
still considered “one of the unresolved issues of interference
theory” (Zechmeister & Nyberg 1982, p. 112). I cannot help but
think that attention to issues of effect size and statistical power
would have greatly benefited investigators. Rather than conclude
that spontaneous recovery did not exist, researchers might have
used statistical power to set an upper limit on the magnitude of the
effect as a guide for future investigators, much as is done in the
physical sciences (Rossi 1990; 1997). Based on the average sample
size of 80 typical of work in this area, type II error rates can be
determined across a range of possible effect sizes. For example,
the type II error rate is .05 for an effect size of d 5 0.82 and .10 for
an effect size of 0.74. There is only a 25% chance that the effect
size is greater than 0.59. This procedure provides a sensible
method of evaluating null results and may be useful in designing
further research.

Researchers might also use meta-analysis to aid in the design of
future studies by using the average effect size as the basis for
selecting a sample. Researchers could easily determine that a
sample size of 208 subjects would be necessary to achieve power of
.80. Alternatively, the lower bound of the 95% confidence interval
could be used as the estimate of effect size. In this case, a sample
size of 432 would be necessary. Although large for laboratory
research in human learning, sample sizes this large and larger
were sometimes used in spontaneous recovery research. If such
sample sizes were too large for an investigator, additional avenues
of exerting experimental control over the situation would be
necessary to increase the expected size of the effect. Such addi-
tional approaches would be desirable in any case as a means of
further delineating and understanding the conditions under which
the phenomenon occurred.

NHSTP should not be abandoned, but it does need help. As
Chow indicates, more rigorous adherence to the underlying logic
of experimental design along with increased attention to issues of
experimental control are important parts of that help. But so too
are techniques such as meta-analysis and power analysis, which
can be essential for understanding the results of experiments and
for aiding in the accumulation of results across studies. By such

means the behavioral sciences may yet set out on the path the
more developed sciences have already discovered.

Significance testing in a Bayesian
framework: Assessing direction of effects

Henry Rouanet
UFR Math-Info, Université René-Descartes, 75270 Paris Cedex 06, France.
rouanet@math-info.univ-paris5.fr

Abstract: Chow’s efforts toward a methodology of theory-corroboration
and the plea for significance testing are welcome, but there are many risky
claims. A major omission is a discussion of significance testing in the
Bayesian framework. We sketch here the Bayesian reinterpretation of the
significance level for assessing direction of effects.

My first reaction to Chow’s book was positive. I like the project of
discussing theory corroboration (as opposed to “utilitarian” experi-
mentation) in connection with a well-chosen example (the kernel-
negative experiment), considering (1) the various sorts of hypoth-
eses – substantive, research, experimental, and statistical – that
are involved in experimental research as well as the role of
significance testing as a minor premise in a series of implicit
syllogisms in theory corroboration. Above all, I fully concur that
the criticisms against significance testing have definitely gone too
far, and that it would be foolish to abandon significance testing just
because there are common “false beliefs” about it. The message of
methodologists should be education, not eradication. Significance
testing has a useful role to play in data analysis.

Unfortunately, as I read further, I became perplexed about
Chow’s peremptory treatment of many topics, such as effect size.
For example, isn’t it poor judgment to claim that the question
“How effective is the treatment?” is not even meaningful in
theory-corroboration experiments? What I find more than ques-
tionable in Chow’s book, however, is the Bayesian chapter, and I
will now concentrate my comments on that.

Chow’s critique of the Bayesian approach is confined to the
most narrow-minded personalistic “Bayesianism,” a view that no
contemporary Bayesian statistician would hold (Bayesian statisti-
cians have learned to be tolerant). Current developments in the
“noninformative” approach to Bayesian statistics are simply ig-
nored by Chow. (In this connection, his citations of Jeffreys are
misleading.) In the noninformative (as opposed to the “personalis-
tic”) approach, the prior distribution is chosen to express a “state of
ignorance” about parameters, with the following motivation: if the
prior probability expresses ignorance about parameters, the poste-
rior probability expresses the evidence provided by the data. Using
noninformative priors provides a link between Bayesian and
frequentist procedures, which can be reinterpreted in terms of
probabilities about parameters. Such a link is surely not coinciden-
tal, and deserved consideration in a book devoted to the rationale
of statistical significance.

Chow’s example of a fictitious poll is extraordinarily contorted,
and certainly not congenial to actual Bayesian data analysis.1 Why
did Chow not take up a condition dealt with earlier in the
frequentist framework? Let us, for example, take the negative
kernel experiment, with a matched-paired design and n 5 20
subjects (hence 19 d.f.). If the observed t-ratio is 11.727, the
following frequentist statement holds (under the usual normal
sampling model): P(t . 11.729ud 5 0) 5 0.05 (where d denotes
the true mean effect); that is, the probability of obtaining a result
more extreme (on the upper side) than the data, if d 5 0, is 0.05.
Now in this situation, a standard Bayesian analysis consists in
inducing a noninformative prior distribution with the parameters
d and s (SD of individual differences). Based on a well-known
result in Bayesian statistics (e.g., Box & Tiao 1973, p. 102), under
these prior assumptions the following statement holds: P(d .
0udata) 5 0.95 (notice that this statement differs, of course, from
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the notoriously false belief P(d 5 0udata) 5 0.05). That is, the
posterior probability that the true effect d has the same sign (here
positive) as the observed effect is 0.95. Intuitively, for the negative-
kernel experiment, an observer in a prior state of ignorance will,
after the experiment, become 95% sure that it is more difficult to
remember additional words, after a negative sentence.

It seems to me that the foregoing Bayesian reinterpretation of
the significance level in terms of assessing the direction of effects is
a highly meaningful interpretation of significance testing, and as
such provides a strong argument in favor of it. Of course, this
interpretation is “bought” at the price of the additional assump-
tions about prior distributions; those who are not willing to make
those assumptions may stick to the frequentist interpretation. But
the two interpretations are not in conflict. Contrary to Chow’s
prejudice, turning to the Bayesian framework does not mean
giving up significance testing. My claim is that Chow’s plea for
significance testing would have been reinforced by the rein-
terpretation of the significance level in the Bayesian framework.
In this view, Bayesian procedures can be used to complement,
rather than replace, the familiar frequentist procedures: this
approach is presented in Rouanet (1996) and developed in
Rouanet et al. (1991).

In conclusion, I have serious reservations about Chow’s book.
Whereas I appreciate the author’s efforts to elaborate a methodol-
ogy of theory-corroboration and I concur with the plea for signifi-
cance testing, the book contains too many ill-considered claims.
The discussion of Bayesian inference is misguided. A major
omission is the failure to present significance testing in the
Bayesian framework, with a reinterpretation of the observed
significance level for assessing the direction of effects.

NOTE
1. The calculations of Table 7.1 (p. 146) are obscure. How do the data

(i.e., the row labeled “evidence”) enter the computations? Where do the
likelihoods come from? Since the hypotheses are obviously not mutually
exclusive, how can the posterior probabilities be correct? In addition,
there is a significant discrepancy between the book and the Précis. In the
book (p. 147), the fictitious editor E will endorse the Center Party if he is
75% sure about the hypothesis Hc; in the Précis (sect. 36, para. 3), when
the party is preferred by 75% of the prospective voters.

Costs and benefits of statistical
significance tests

Michael G. Shafto
Human-Automation Interaction Research Branch, NASA-Ames Research
Center, Moffett Field, CA 94035-1000. shafto@simon.arc.nasa.gov

olias.arc.nasa.gov/

Abstract: Chow’s book provides a thorough analysis of the confusing array
of issues surrounding conventional tests of statistical significance. This
book should be required reading for behavioral and social scientists.
Chow concludes that the null-hypothesis significance-testing procedure
(NHSTP) plays a limited, but necessary, role in the experimental sciences.
Another possibility is that – owing in part to its metaphorical underpin-
nings and convoluted logic – the NHSTP is declining in importance in
those few sciences in which it ever played a role.

I think the late Amos Tversky said that even experts should not try
to reason intuitively about probability. As a case in point, the “null-
hypothesis significance-test procedure (NHSTP)” has claimed a
long list of victims, some of them well documented by Chow,
ranging from the hapless introductory student to the would-be
expert. Few of us who have inflicted the NHSTP on our students
could measure up to the intellectual standard that Chow implies.
Many of us who commit statistical analyses as a side-effect of our
work will be reduced to befuddled self-doubt. It seems that every
nuance of the NHSTP is plagued with conceptual difficulties even
more paralyzing than we suspected.

What should we conclude from this widespread confusion,
which, according to Chow, manifests itself too often in mis-

construals of data, misinterpretations of experimental results, and
possibly serious errors in the evaluation of competing theories?
One conclusion might be that practitioners need a more sophisti-
cated understanding of the logic and application of the NHSTP.
Chow has done a thorough and systematic job of trying to defend
that position against the arguments reviewed in Chapter 1, “A
Litany of Criticisms.”

Chow provides strong responses to these criticisms. In later
chapters he also provides careful discussions of the difficulties and
errors surrounding statistical power and effect-size estimation.
These discussions should be required reading for basic and ap-
plied researchers in behavioral and social sciences, as well as for
instructors in quantitative methods. The general strategy behind
his arguments, however, is to restrict the scope of applicability of
the NHSTP. How restricted can the applicability become before
the benefit is negligible compared with the costs?

Chow’s thorough discussion of the misconceptions surrounding
the NHSTP tends to weaken his principal conclusion – that the
NHSTP has a crucial role to play in empirical research, especially
in theory corroboration. I would suggest that the NHSTP adds
little value and much confusion, as Chow’s own analysis shows, to
the research process.

Rather than being used in model testing, the NHSTP is often
used in lieu of model testing (Simon 1979, Ch. 5.4). The dominant
concerns in theory-development tend to be testable speculations
about “laws of qualitative structure” (Langley et al. 1987, p. 21) or
explorations of simple systems (Ohlsson & Jewett 1997). As more
powerful theories and more specific models are developed, re-
search efforts focus on finer-grained analyses of denser data sets,
for example, psychophysiological data, sequential behavior, learn-
ing, and individual differences. When theory is strong, and specific
models are at issue, we would expect hypothesis-testing to focus
on more interesting questions than Theory A versus random
chance.

In utilitarian research, the NHSTP is often (mis-)used as a filter.
Faced with weak theory and many possible sources of variance, we
monitor available data for “significant” correlations or trends. In
contexts such as aviation safety or public health, we need a
systematic method to help us interpret large, noisy datasets and to
call our attention to apparent changes which may require inter-
vention. The logic of the NHSTP is not followed in any clear sense,
although components of it play a role in balancing sample size,
variability, and intuitive assessment of possible costs. There is
usually no real population and no real sample, but there is
reasoning about data and about the risks and costs associated with
any course of action, including inaction.

It is not clear that the NHSTP adds value in these situations,
compared with other theory-based methods such as decision-
theoretic analyses or Bayesian methods, or compared with rules of
thumb such as those used in statistical process control. As Chow
points out, statistical significance can easily be misinterpreted in
large samples. The NHSTP may be most clearly and directly
useful, in both utilitarian research and theory corroboration, as a
safeguard against over-interpretation of subjectively large effects
in small samples. This benefit, however, must be weighed against
the considerable difficulties that Chow documents. Either he is
wrong in his analysis, or the NHSTP entails profound conceptual
difficulties even for many experts; and this is not a strong recom-
mendation for its use as a fundamental method of analysis.

A few years ago I taught a course in quantitative methods for
business majors. I was surprised to find that, despite covering
some challenging applied mathematics, textbooks in this field
made no mention whatever of the NHSTP. Related topics, such as
decision theory, Bayesian inference, and stochastic modeling were
covered. Methods were included that required solution by
computer: linear, integer, and goal programming; Monte Carlo
simulation. Yet, in three representative textbooks (Lapin 1994;
Stevenson 1992; Winston 1991) comprising about 3,000 pages,
there was only one brief mention of the NHSTP (Lapin 1994,
pp. 997–1002). This experience, as well as interactions with
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colleagues in chemistry, physics, biology, and engineering, has
convinced me that the central place of the NHSTP in some
behavioral sciences owes more to historical accident than to a
favorable cost-benefit ratio.

Inductive strategy and statistical tactics

Paul Snow
P.O. Box 6134, Concord, NH 03303-6134. paulsnow@delphi.com

Abstract: Chow ably defends classical significance testing by relating this
method to venerable principles for inductive reasoning. Chow’s success
does not preclude the use of other approaches to statistical reasoning,
which is fortunate not only for Bayesian rivals, but even for some fellow
classicists.

Chow offers a fresh, but appropriately conservative defense of
classical null-hypothesis significance testing. For Chow, statistical
significance operates within a larger theory of inductive reasoning.
“Inductive reasoning” is meant in the broad sense in which
philosophers (e.g., Black 1969) sometimes use it to describe any
nondemonstrative inference, rather than the narrower sense of
generalization based on specific observations.

Chow builds his theory from the precepts of John Stuart Mill
and Karl Popper’s falsificationism. The mission of significance
testing is to exclude chance as a plausible explanation for whatever
evidence is being evaluated if the data warrant exclusion. What-
ever else one might conclude from the evidence is attributed to
other identifiable aspects of the inductive program, such as the
design of experimental investigations.

The resulting clear division of labor between statistics and
inductive logic deflects criticism that is sometimes directed at
classical statistics onto those other aspects of the inductive pro-
gram. It also provides a principled framework for the evaluation of
empirical work which uses significance testing. Traps for the
unwary are revealed (e.g., just because a result is not attributable
to chance it does not follow that the investigator’s favorite non-
chance explanation is correct) along with the means of avoiding
them (principally the correct use and interpretation of controls in
experiments, analyzed here with much subtlety using apt exam-
ples from the psychological literature along with thoughtful hypo-
thetical illustrations).

Some specific features of significance testing which trouble
critics are deftly dispatched. For instance, significance has an
“either-or, accept-reject” quality, in contrast to the more gradu-
ated conclusions of Bayesians. In Chow’s account, dichotomy
appears quite natural. Either chance is tenable as an explanation of
what was observed, or else it is not. The issue can be treated
somewhat like a methodological concern, such as a suspicion that a
test tube might have been dirty. If contamination is a likely
possibility, then that is cause to disbelieve and dismiss the research
results in question; likewise if chance may be operating un-
checked. That the line between the tenable and the untenable is
arbitrary is admitted frankly and without apology.

Chow’s argument on this point compares well with other classi-
cal accounts of the import of rejecting the null hypothesis (for a
review of these, see Howson & Urbach 1993, Ch. 9). But consider
the suggestion that one might report p values numerically rather
than as inequalities (e.g., p 5 0.0123, rather than p , .05). Chow
discusses this option almost as if it were an alternative to classical
significance theory, rather than an aspect of classicism. “Either-or”
(p , .05, say no more) is defensible, but surely p as a number
provides additional information of legitimate interest to some
readers, and not just those readers who might misinterpret it in
various ways discussed by Chow. Similarly, confidence intervals
and power analysis appear here almost as rivals rather than as
complements to significance. The defense offered, then, is highly
specific to significance testing, as opposed to the full range of
classical methods.

Some criticisms that arise outside the classical camp are not
fully treated in Chow’s book. The inflexibility of classical stopping
rules, for instance, is of both practical and theoretical concern,
sharply different from Bayesian methods, and a perennial subject
of discussion (Berger & Berry 1988). Chow touches briefly on
stopping rules as an aspect of Bayesian sequential sampling, but
the force of the general Bayesian or “likelihoodist” position is
neither acknowledged nor addressed.

A deeper problem may be that the quasi-syllogistic approach
presented by Chow, following the lead of Mill and Popper, may not
provide a sufficiently rich account of inductive reasoning. Few
would dispute that (1) controlled experimentation can be an
effective way to explore the world or deny that (2) modus tollens
has a place in theory testing. The similarity between these tech-
niques and the formalisms of deductive logic imparts a reassuring
ring of truth to the inferential enterprise.

On the other hand, any appearance of soundness is illusory,
since inductive reasoning is not demonstrative. More specifically,
the “eliminative” pattern of inference advanced by Chow is simply
not a syllogism. Chance explanations are not really eliminated by
significance results; they are only made relatively implausible in
the opinion of a particular observer.

That does not render a quasi-syllogistic approach useless, but it
does suggest that other approaches might also be worth looking
into. Those other approaches need not be hostile to classical
insights. For example, the principles behind significance testing
fare quite well in the personalist and otherwise “confirmation”
oriented inductive theories of George Polya (1954).

Chow’s argument does not succeed in excluding different ap-
proaches to the analysis of chance influences. Nor does it rule it
out that within those other approaches some sort of graduated
discounting, rather than outright rejection, of questionable re-
search might be plausible. The failure to rule out alternative
approaches and rationales is not devastating to a purely defensive
work like Chow’s. Significance testing deserves to be practiced if it
has any foundation. Chow has furnished an entirely satisfactory
“existence proof” for such a foundation, along with a tough-
minded guide to the proper uses of significance testing in empiri-
cal research.

The historical case against null-hypothesis
significance testing

Henderikus J. Stam and Grant A. Pasay
Department of Psychology, University of Calgary, Calgary, Alberta, Canada
T2N 1N4. stam@acs.ucalgary.ca
www.psych.ucalgary.ca/people/faculty/stam/

Abstract: We argue that Chow’s defense of hypothesis-testing procedures
attempts to restore an aura of objectivity to the core procedures, allowing
these to take on the role of judgment that should be reserved for the
researcher. We provide a brief overview of what we call the historical case
against hypothesis testing and argue that the latter has led to a constrained
and simplified conception of what passes for theory in psychology.

Like Truman Kelley (1923) before him, Siu Chow (1996) seeks to
defend the canons of statistical methods, in particular null-
hypothesis significance testing, from its multiple critics. Kelley’s
concern was to defend the notion that objectivity was to be found
in methods, not in the judgment of the scientist (see Stout 1987,
for an excellent discussion of the controversy). Similarly, Chow,
both here and in his previous writings (e.g., 1991), takes us
through an updated version of this argument and does us a great
service by collating in one volume most of the criticisms and a
great deal of material relevant to the recent debates concerning
hypothesis testing. Our view, however, is that Chow has misin-
terpreted what we will call the historical critique, which focuses on
the historical emergence of hypothesis testing and its use by
psychologists, particularly its institutionalization (e.g., Danziger
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1987; 1990; Falk & Greenbaum 1995; Gigerenzer 1987; 1993;
Gigerenzer & Murray 1987; Gigerenzer et al. 1989). In addition,
we argue that this institutionalization has stifled, and continues to
stifle, theory development in psychology.

First, we recognize that Chow considers a more limited role for
hypothesis testing procedures than most textbooks allow. He does
this by giving us a third version of hypothesis testing, one that is
different from both the Fisherian and Neyman-Pearson versions
and one that constitutes a refined version of the hybrid model
widely adopted in psychology and elsewhere. To his credit, Chow’s
hybrid version is explicitly so. His version is rhetorically structured
within a logical framework, creating the impression of a potentially
automated procedure, one that requires the researcher to follow
certain rules of logic that inevitably lead to proper conclusions
with proper use. This rhetorical reconstruction also allows Chow
to argue that most criticisms of hypothesis testing “are based on
critics’ diverse assumptions about the prototype, goal and nature
of empirical research” (p. 176) rather than on the details of
hypothesis testing procedures themselves.

As Danziger (1987; 1990) has argued, one striking development
in the history of twentieth-century North American psychology
was the gradual emergence of the aggregate as the unit of analysis.
As a response to the pressures for applied knowledge, psycholo-
gists began constituting research groups whose purpose was to
serve as a vehicle for comparison with other groups, for example,
those differing in intelligence. Gradually, individual scores came
to be reported in the aggregate with departure from the aggregate
as “error.” But until their conjunction with inferential statistics,
aggregate scores created difficult theoretical problems for mid-
century psychology. In particular, statistical aggregates that re-
ferred to groups of individuals made it difficult to elaborate the
theoretical intra-individual processes that were purportedly of
theoretical interest to psychology. Danziger’s historical analysis
points out that the adoption of inferential statistics allowed psy-
chologists to argue that “the hypothetical distributions of the
statistical analysis could be identified with characteristics of real
psychological systems, thus permitting a bridging of the gap
between data that referred to groups and theoretical constructs
that referred to individuals” (1987, p. 46). From this emerged the
notion that constructs such as “memory” could be studied not by
investigations of individual acts of remembering but by comparing
experimental group performances on some restricted and con-
trolled task. The aggregated numbers referred back to a stylized
and idealized (or functional) conception of memory that was not
representative of any single participant in the experiments.

The role of hypothesis-testing in this history changed the very
nature of what counted as theory in psychology. Chow bypasses
the question of how we come to have theories by invoking
Popperian indifference – anything can count as a conjecture so
long as it is “consistent” with the phenomenon. He uses “theory”
and “hypothesis” interchangeably, assuming that both are mere
“speculative accounts” (p. 46). Theories of any complexity are
dispensable in hypothesis-testing scenarios, since these require
only binary hypotheses and Chow’s logic of the true theory-testing
situation (Ch. 4) requires several translations from what he calls
“substantive hypothesis” to “statistical hypotheses.” At each step
an unknown number of ceteris paribus conditions must hold. The
final test of a hypothesis is only indirectly related to any theoretical
account and must be a test of some aggregated set of numbers to
fulfill the requirements of the hypothesis-testing mechanisms.
These mechanisms allow for the testing of binary decisions, and
theory “corroboration” is never truly that; rather, it is the repeated
posing of binary questions that require little forethought. But as
the historical case illustrates, what was alluring about the new
procedures was their ability to appear objective. It is this feature of
the tests that Chow wants most to defend. Years of sustained
criticism have made hypothesis testing out to be the ambiguous
procedure it is; Chow denies this by arguing that the tests have
merely been badly used. He states that the “random sampling
distribution of the test statistic determines . . . its meaning” (p. 13)

and that the alpha-level has a meaning “independent of the
researcher’s theoretical preference.” We don’t know what it means
for meaning to reside outside the researcher’s beliefs or theories
and outside the community to which these beliefs and theories
make sense. Chow’s rhetorical reconstruction goes so far as to deny
meaning and intent to the researcher. He claims that the correct
use of hypothesis-testing guarantees objectivity whereas the long-
standing debate over its use demonstrates, instead, the highly
negotiated nature of its meaning.

Significance testing has become widespread in psychology (e.g.,
Hubbard et al. 1997; Sterling 1959). At the same time, our
theoretical vocabulary has changed significantly. The develop-
ments in theory seem curiously unrelated to developments in, or
the use of method (the exception is the reverse, namely, the use of
tools turned into theory, see Gigerenzer et al. 1989). Chow might
argue that since it doesn’t matter where theories come from, this is
irrelevant. When a discipline’s theoretical developments are
largely unrelated to its empirical pursuits, however, that disci-
pline’s scientific credentials are surely suspect. Chow unwittingly
gives an example of this in Chapter 4. Savin and Perchonock’s
(1965) study concerns a linguistic analogue of Chomsky’s
transformational grammar. Chomsky’s (e.g., 1965) theory of
transformational-generative grammar has developed and altered
in important respects since its major 1957 formulation. Chomsky
does bring a variety of observations and arguments to bear that
have an empirical grounding but his theory has never depended on
the kind of test proposed by Savin and Perchonok.

In Chapter 4, Chow invokes Boring’s discussions of control in
experimentation as a way of clarifying the logic of the experiment.
This is interesting because Kelley’s (1923) strongest defense of the
objectivity of statistical methods came in reply to critiques by
Boring (1919; 1920). Among other things, it was Boring’s claim
that it was not the “mathematical result” that determined the
usefulness of obtained data, but the “scientific intuition of the
experimenter and his public” (1919, p. 337). Like Chow, Kelley
defended the statistical procedures of his day as a way to guarantee
an objectivity of method and to remove Boring’s “intuition” from
science. After a half a century of indiscriminate use, we are not
suggesting that hypothesis testing should be abandoned. We do
argue, however, that it is time to accept that, in psychology at least,
the reflexive nature of the subject matter requires that we recog-
nize the researchers’ role in the processes of investigation. This
might liberalize the methods available to our researchers and
students and allow theory to determine methodology, rather than
vice versa.

A plea for Popperian significance testing

Zeno G. Swijtink
Department of Philosophy, Sonoma State University, Rohnert Park, CA
94928. swijtink@sonoma.edu

Abstract: Even in a theory corroboration context, attention to effect size is
called for if significance testing is to be of any value. I sketch a Popperian
construal of significance tests that better fits into scientific inference as a
whole. Because of its many errors Chow’s book cannot be recommended to
the novice.

Of all the human sciences, psychology must have the closest
interest in statistics. This is no doubt because psychology has
enough experimental control to stabilize variability, but not
enough control to eliminate variability altogether. Hence, years
ago, psychologists interacted with statisticians, like R. A. Fisher,
Jerzy Neyman, and Egon Pearson.

Unfortunately, to judge from the references in the back of
Chow’s book, these two groups have lost contact since. I think this
is a shame, because they can still learn from each other. Statisti-
cians have overcome the conceptual confusion that dominated the
acid disputes between Fisher and Neyman in the 1930–50s. They
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now have a better understanding of the differences between
Fisherian significance testing and Neyman-Pearson hypothesis
testing (Cox & Hinkley 1974). Even the contacts between Baye-
sian and non-Bayesian statisticians, in my estimation, have be-
come more productive, and if it has not all become ecumenical,
there is a greater interest in comparing different types of analysis
of the same material. Some of this story is told in our book The
empire of chance (Gigerenzer et al. 1989).

But statisticians can also learn from scientists, including psy-
chologists. An important point that Paul Meehl has argued for
years is that statistical inference does not exhaust all of inductive
inference (Meehl 1990), and Chow elaborates upon this in the
most valuable part of this book. Chow’s analysis, however, is
flawed, and it remains a challenge to identify the place of statistical
analysis in scientific inference in general.

Reading this book was a frustrating experience for me, not only
because it is badly written and makes unreasonable demands on
the reader, such as to remember the difference between [A7-1]
and [A7-2] long after these propositions have been introduced. I
also felt frustrated because I agree with Chow that there remains
an important role for significance testing and I am in complete
sympathy with his Popperian leanings. Yet, at the same time, I
found his book full of historical errors, logical silliness, misrepre-
sentations, and lack of understanding.

The book is not to be trusted as a serious discussion of the
historical record. A most glaring mistake is made in Table 2.3 on
page 21, and repeated in a number of other places. In this table
Chow tries to trace back the NHSTP smörgåsbord to its sources in
either Neyman-Pearson tests of hypotheses or Fisherian signifi-
cance testing. He claims that the “probability of interest” in the
Neyman-Pearson approach – not accepted in NHSTP – is the
inverse probability p(HuD), the probability of the hypothesis given
the data. Chow’s reference that would support this is to an early
paper by Neyman and Pearson (1928). Was Neyman indeed a
closet Bayesian before he turned a frequentist (Neyman 1957;
Neyman & Pearson 1933)? Not at all; the identification is erro-
neous. In their 1928 paper, Neyman and Pearson had not yet
formulated their 1933 solution to statistical inference as inductive
behavior based on the frequency concept, but their problem was
the same: what makes all the statistical tests that are around, based
on the t-statistic, on chi-square, on F, or what have you, good tests?
By way of a solution, they show that some of the standard tests
follow from a likelihood criterion that rejects the hypothesis when
the likelihood of the observed sample under an alternative is
sufficiently large compared to its likelihood under the hypothesis.
Reducing the data to its value for the statistic leads to the same
decision. But the likelihood ratio is defined in terms of P(DuH), the
probability of the data given a hypothesis, or the likelihood of the
hypothesis given the data, a frequency concept. Only in the 1933
paper did the classical NP point of view based on performance
characteristics emerge, but the 1928 paper does not subscribe to
inverse probability.

We can find an example of logical silliness on page 15.
Rozeboom’s refusal to accept the null in the absence of a signifi-
cant result is countered by a “conditional syllogism” that is meant
to back the acceptance of the null in this situation. In this manner
any fallacious inference can be backed by a valid argument! Just
add the additional premise: “If the premises, then the conclusion.”
Such a premise is unwarranted, and often false. I thought that
Chow’s Popperian leanings would have stopped him at this point:
not proven false is not the same as proven true. As a Popperian at
most he could have found corroboration for a whole disjunction of
hypotheses around the null as “not (yet) falsified,” if the test had
been a severe one. This is in fact the use of significance testing that
I myself favor.

I agree with Chow that attention to effect size is often because
of a utilitarian interest, but I am not convinced with one of his
central arguments for leaving classical NHSTP in place for theory-
corroboration experiments. We may be willing to reject the statis-
tical null just on the basis of having a significant result. But if we

agree with Meehl’s “crud” factor, that in the causal rush of things
everything is, however minimally, correlated with anything, we
need evidence of some effect size to conclude that there is
evidence for the experimental hypothesis. A mere denial of the
null is exceedingly weak, consistent with the tiniest shift in mean
that may well be there because experimental controls are never
mathematically perfect. This is to me the crux of the argument that
the statistical null hypothesis is never true, that is, never experi-
mentally realizable, even if the experimental null hypothesis is
true.

Examples of misrepresentation abound in the chapter on Baye-
sianism. The probabilities of an exhaustive set of exclusive hypoth-
eses, as in Table 7.1, should add up to one, especially if one uses
them in the denominator of a posterior probability calculation; –
contra note 1 on page 174 – evidence may be compatible with
mutually exclusive hypotheses, and so on. But these are just silly
mistakes that make the book unfit for a novice. What irritated me
most about this chapter was the straw man Bayesian that is set up.
This is not a serious engagement with the rich Bayesian literature
on experimental design and analysis (Lad & Deely 1994). A basic
misrepresentation is that in Bayesianism “empirical data are
collected [in order] to ascertain the inverse probability of the
hypothesis of interest” (p. 144). This is not the goal of collecting
empirical data; conditionalization only comes up when the obser-
vations have been made. The goal may vary: an experiment may be
chosen because it is likely to diminish one’s own uncertainty about
the explanation of a phenomenon, or because it is likely to
diminish one’s colleagues uncertainty. That is, choice of observa-
tional study or experiment is a matter of Bayesian decision theory,
and not solely, as Chow assumes, of Bayesian confirmation theory.

What about significance testing? Chow’s starting point, that one
should evaluate its role within the whole scheme of inferences
made in scientific research, is essential but, as I indicated above, I
found his execution flawed. Statistical analysis has two parts:
modeling (finding a [family of ] model[s] that may fit the data), and
estimation (ranking the members of this family as to how well they
fit the data). Significance tests come in to test whether the model is
plausible at all (Box 1980). If the family of models is rejected, we are
left with little, because the complement of the family is unwieldy. If
there is no significant result, we are in business, not because we
have shown the model to be correct but because we follow the
Popperian methodological rule that we may use a model as long as
we have not falsified it even though we tried hard. Admittedly, this
turns Fisher on his Popperian head, but somewhere I still savor the
thought that my construal is in a Fisherian spirit.

Significance tests: Necessary but
not sufficient

Louis G. Tassinary
Environmental Psychophysiology Laboratory, Texas A&M University, College
Station, TX 77843-3137. lou@archone.tamu.edu
red.www.nsf.gov/EHR/GERD/pff/fellows/tassinary-louis.html

Abstract: Chow (1996) offers a reconceptualization of statistical signifi-
cance that is reasoned and comprehensive. Despite a somewhat rough
presentation, his arguments are compelling and deserve to be taken
seriously by the scientific community. It is argued that his characterization
of literal replication, types of research, effect size, and experimental
control are in need of revision.

Over the past 10 years, Chow has been nearly alone his quixotic
fight against the power-analysis juggernaut. Statistical significance
(Chow 1996) is the culmination of his effort. In this book he
confronts directly the blunderbuss attack on the null-hypothesis
significance-testing procedure (NHTSP) and provides a concep-
tual framework for understanding why both the NHTSP and the
proposed alternatives (i.e., statistical power, confidence intervals,
and meta-analysis) continue to be misunderstood.
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Before commenting on a few specific issues, let me make one
general comment: Chow is to be commended for writing such a
book. He is clearly fighting an uphill battle, and I hope the bulk of
his arguments ultimately prevail in the midst of such silliness as the
recent calls to ban the significance test (e.g., Hunter 1997). Chow’s
actual text, however, seems to distract from and even occasionally
undermine the force of his arguments. The chapters are very
repetitive, the figures of poor quality, and the tables confusing;
there are also noticeable misspellings. The arguments warrant a
better showing.

The crux of Chow’s argument is that the NHSTP centers around
the assessment of a particular conditional probability; that is, the
probability of the data, given that the null hypothesis is true. By
embedding this assessment within the context of a nested series of
deductive syllogisms, it is possible to exploit the outcome of this
assessment to test a particular theory-based prediction. Much of
what Chow argues is not new. It was clearly articulated nearly two
decades ago for both undergraduate (Walizer & Wiener 1978) and
graduate audiences (Cook & Campbell 1979). What I believe is
new is his novel suggestion that by taking the notion of conditional
probability seriously we are driven to the conclusion that “no
distribution based on H1 is implicated in NHSTP” (p. 137). As
Chow correctly points out, this simple conclusion has profound
implications for our understanding of statistical inference gener-
ally, and places the burden of validity back squarely on the logic of
the experimental design rather than on the elegance of formalisms
(cf. Platt 1964).

Despite my agreement with his arguments against the use of
either power analysis or Bayesian statistics to supplant the role of
converging operations in the establishment of internal validity, I
found Chow’s rigid categorization of the different kinds of re-
search (i.e., theory corroborative, utilitarian, clinic, and generality)
somewhat anachronistic. Comparative research on the conditions
and effects of various forms of action, and research leading to
actual real world actions (Lewin 1946) was originally and is still
currently the most common form of scientific research. The
theoretical scientist sitting in his ivory tower advancing knowledge
and the applied researcher out in the trenches building a better
mouse trap have always been caricatures, but they are quickly
becoming unrecognizable. Because of the confluence of theoreti-
cal and applied research it is counterproductive to preclude
alternative indices such as effect size from having any role in
theory corroboration. Indices such as this have clear implications
for the sufficiency testing of quantitative models, whether neural
or ecological, and it would be unfortunate if Chow’s important
insights about statistical power and conditional probability were
discarded because of a failure to see the usefulness of quantitative
indices in the process of model building and testing.

Given the well-argued position for the necessary (albeit limited)
role of significance tests in the theory corroboration process, I was
also struck by the offhand dismissal of literal replications as
misleading (p. 141). If the goal of the NHSTP is to establish
whether or not there is a difference worth explaining, then the
literal replication must be as important, if not more so, in estab-
lishing the existence of an explanandum. The astronomical obser-
vation of a new comet, a report of a cure for AIDS, or the
announcement of the successful achievement of cold fusion are all
intriguing and have clear theoretical implications. Yet the inferen-
tial specificity of subsequent attempts to refine and test the
theoretical implications of such reports hinges upon the ability of
independent investigators in diverse laboratories to successfully re-
plicate these results. Converging operations and/or constructive
replications build upon but do not supplant the need for literal
replications. This is especially true in fields where the experimen-
tation is heavily dependent upon sophisticated procedures and
elaborate instrumentation (cf. Church et al. 1996).

One final note. Chow uses Boring’s (1954/1963) tripartite
definition of experimental control as check, restraint, and guid-
ance to explicate the methodological distinctions made by Cook
and Campbell (1979) between a true experiment, a quasi-

experiment, and a non-experiment. I found this discussion confus-
ing and believe it stems from a misunderstanding of both Boring
and Cook and Campbell. Boring defines guidance as the “alter-
ation of the independent variable in accordance with precise
known predetermination” (p. 113). This is clearly different from
Chow’s definition as “provisions to exclude procedural artifacts”
(p. 76), something that applies equally well to all three senses of
the experiment control. Cook and Campbell distinguish between
the three types of inquiry in the following manner: in any inquiry
there are elements that can be labeled treatments, outcome
measures, and experimental units. The critical differences, how-
ever, are that investigators are unable to randomly assign experi-
mental units to treatments in quasi-experiments; and in non-
experiments, they are also unable to decide which outcome
measures to acquire. Thus, the type of control is orthogonal to the
type of investigation, although there is presumably a rough cor-
relation between the overall degree of control and the degree to
which an investigation approximates a randomized experiment.

On various methods of reporting variance

Bruce A. Thyer
School of Social Work and Department of Psychology, The University of
Georgia, Department of Psychiatry and Health Behavior, Medical College of
Georgia, Athens, GA 30602. bthyer@uga.cc.uga.edu

Abstract: Chow’s defense of NHSTP is masterful. His dismissal of
including effect sizes (ES) is misplaced, and his failure to discuss the
additional practice of reporting proportions of variance explained (PVE) is
an important omission. Reporting the results of inferential statistics will be
greatly enhanced by including ES and PVE when results are first deter-
mined to be statistically significant.

Chow (1996) can be read on at least two levels. On the first it is a
persuasive response to the critics of null-hypothesis significance-
test procedure (NHSTP), showing that many of their remarks are
misplaced. In the second, it should be required reading for all
students after completion of one or two courses in inferential
statistics, as it forms an admirable foundation for understanding
what statistics can and cannot do for the researcher. It will be an
effective inoculum against a lifetime of erroneous understanding
and application. Moreover it is a fairly simple text: complex
statistical formulae are absent and examples of experiments used
to illustrate the use of statistics are easy to follow.

Chow deals with some of the purported remedies for the abuse
of statistics, conducting a priori analyses of statistical power before
conducting a study, reporting effect sizes, and meta-analyses in a
generally competent manner. His criticisms of meta-analytic pro-
cedures are particularly well-taken. Curiously, he fails to discuss
another suggestion for augmenting conventional statistical report-
ing practices: that of routinely including the proportions of vari-
ance potentially explained, whenever one has statistically signifi-
cant difference (see Good & Fletcher 1981; Hudson et al. 1985;
Stocks 1987).

This is a common practice, or at least well understood, when
reporting the Pearson r correlation coefficient. Calculating r2
yields the maximum potential predictive power that may be
inferred from one variable to its correlate. A Pearson r of .30
between variables X and Y allows one to determine that a maxi-
mum of 9% of the variance of Y may be attributable to (“explained”
by) its linear regression on X. An r of .80 yields an r of .64, and so
forth.

Less common is reporting proportions of variance potentially
explained (PVE) by independent variables subjected to inferential
statistical analyses of differences among the dependent variables.
Were this routinely done, “statistically significant differences”
would never be erroneously assumed to be important or meaning-
ful, or to imply anything of clinical significance. Take the instance
of an anova where [F(3, 984) 5 14.8; p , .0001]. Some less
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sophisticated readers may infer powerful effects from this. Calcu-
lating the PVE (see Hudson et al. 1985) finds that only 4% of the
variance in outcomes can be potentially attributable to the inde-
pendent variable. This is a “potential” effect, for as Chow notes
repeatedly, inferential statistics alone are not necessarily useful in
determining the “causes” of any differences. Such determinations
can only be meaningfully undertaken in the context of a given
experimental design. Reporting [F(3, 984) 5 14.8; p , .0001, PVE
5 .0432] aids immensely in the interpretation of this anova,
compared to the more common practice. A further useful practice
is to provide confidence intervals around a PVE.

Chow is quite correct in dismissing arguments that conventional
means of reporting the results of statistical tests (e.g., Ns, df, t or F
coefficient, alpha) should be replaced with ES (effect size) esti-
mates. He misses the mark in arguing against supplementing
conventional reporting with additional information about ES and
PVE, providing conventional levels of statistical significance (e.g.,
p , .05) are attained. Nothing is lost, and there is much to be
gained in reporting ES and PVE. Both are useful, ES in terms of
standard deviation units, PVE in terms of explained variance;
these are related but conceptually different concepts.

The practical importance of a given effect size or PVE is not
solely a matter of statistical interpretation. Small effects can be
quite important in some fields of practice (e.g., a nation-wide 5%
reduction in automobile fatalities), less so in others (e.g., a 5%
reduction in Beck Depression Inventory Scores for a treatment
group of 40 clients). ES and PVEs obtained in the context of a
poorly designed study do not alter its fundamental shortcomings.
ES and PVEs added to a sound investigation can be very helpful.

Chow’s discussion of statistical power is very well done. He
omits a problem commonly encountered by applied researchers
and those investigating new areas. To complete an a priori power
analysis, one must establish the required alpha level, the statistical
power desired, and the effect size which is anticipated. Re-
searchers very often have little guidance in anticipating the magni-
tude of the effects (minimum expected or desired difference)
from a given independent variable. This renders problematic the
advocacy of using a priori power analysis to help establish the
desired sample size of a prospective experiment. My experience is
that this is the major reason that my students (and myself for that
matter) fail to conduct a priori power analyses. Arbitrarily select-
ing a figure (a.k.a., guessing) does not seem like a sound practice.

The above minor points aside, Chow’s Statistical significance is
a very sound work which admirably clarifies many conceptual
confusions on the role of inferential statistics in experimental
research.

Statistical inference: Why wheels spin

William S. Verplanck
Professor of Psychology, Emeritus, University of Tennessee, Knoxville,
Knoxville, TN 37916. wverplan@utk.edu
funnelweb.utcc.utk.edu/,,,,wverplan

Abstract: NHSTP is embedded in the research of “cognitive science.” Its
use is based on unstated assumptions about the practices of sampling,
“operationalizing,” and using group data. NHSTP has facilitated both
research and theorizing – research findings of limited interest – diverse
theories that seldom complement one another. Alternative methods are
available for data acquisition and analysis, and for assessing the “truth-
value” of generalizations.

Since 1955, the cumulative number of papers cited by Chow is a
linear function of the year. A short fall-off in rate of citations per
year in the early seventies is made up by an increased rate in 1990,
when “questions began to be asked.” The few references prior to
1955 are dated over a period of years: one in 1763, the rest from
1927 to 1954. These are “basic” works on the philosophy of science
in books and at work.

George Miller’s 1956 paper, entitled “The magical number
seven, plus or minus two: Some limits on our capacity for process-
ing information,” often taken as the beginning of the “cognitive
revolution,” introduced “information processing” into psychology.
“Information processing” became the subject for theorizing in
“cognitive science.”

In due course, first Popper and then Kuhn confirmed and
endorsed, at least by implication, the “cognitive revolution,” the
new paradigm, ensuring that the theory of the “scientific empiri-
cists” about theories and theory-testing would be wedded by still
further theories (e.g., about “truth” and “falsification”) to NHSTP.

Chow’s citations may reflect only his decisions of what to cite.
They nevertheless clarify the historical development of the wed-
ding of “cognitive science” to inferential statistics.

Back in the forties, somebody measured the Hullian “e-bar-dot”
by dint of 26 or so assumptions made about data from rats. Ever
since, this reviewer has been suspicious of “assumptions” and is
inclined to hunt them out, and to sound an alarm when they
remain hidden.

Chow states the assumptions upon which NHSTP is based. In a
complex series of arguments and presentations, he enables the
reader to identify the kinds of data – and guesses (hypotheses,
theories) – based on them that are suited to treatment by NHSTP.

Chow does not consider (a) the samples of individuals whose
behaviors provide the data used with NHSTP for the development
and testing of theories on the cognitive functions of the “mind” or
“brain” of the human (and some other) species, (b) an evaluation
of the concept of “operationalizing,” (c) the relationship of statisti-
cal measures derived from group data to the behavior of any one
individual in the group, or (d) the implications for both research
and theory in psychology of NHSTP methodology for rejecting
“untruth.”

Sets of data used in the cognitive sciences are most often
derived from the behavior of experimental groups made up of
students at college/university A in the year X. Most often, these
are students in psychology courses who were required to serve as
subjects, or who served as subjects to make up for an exam they
missed, or who were paid to serve, or who volunteered. Many of
these may have liked, disliked, or not known the individual who
“ran” them. Can findings on such a sample be replicated using a
sample of students at college B, C, or D, in years X 1 10, X 1 20, or
X 1 30? Are these appropriate samples of the human species –
even of young Americans? (Time for a t-test!) Are such samples
appropriate for generating theories purporting to find out about
“cognitive structures” of the brain or “mind”?

In “operationalizing” theoretical terms and statements, Boring
and Pratt stood “operationalism” on its head. One published
research – reprinted in a book of readings – “operationalized” the
Freudian identification with the father-figure (or some such). He
measured this by a count of spools packed in boxes by Stanford
undergraduates in 195x, following the single instruction “pack the
spools in the boxes” (with no further instruction or “feedback”)
until they stopped. How many other theoretical entities can this
procedure “operationalize?”

“Operationalization” produces garbage; most psychologists
have failed to note that Bridgman’s “operationism” developed
from the methods used in measuring “time” and “space” – before
“Big Bang” theory.

Theorists use group data from samples using “operationalized
concepts” to construct falsifiable (seldom falsified) theories about
the structures of the human mind or brain that “process informa-
tion.” What structures? Where? In the mind or brain of that .56
infant of the 1.56 infants that statistics tell us is/are born to the N
female graduates of Z University in the 25 years following gradua-
tion? What are the assumptions underlying the application of
probability theory about the distribution of errors to such group
data?

In analyzing group data, one adds a datum (information; 0, 1) on
each identifiable thing a single subject does, first with another
such datum-data, then with other things that this individual does;
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these new “data” are then added to the equivalent new “data” of
every other subject, producing newer “data.” Such a procedure
seldom fails to produce normally distributed “data,” suitable for
NHSTP. That the occurrences of each specific action (response) of
each subject might show orderliness – “lawfulness” – not suitable
for NHSTP methodology is ignored, even though this is easily
demonstrated by research in both “psychophysics” and “learning.”

The wedding of NHSTP with cognitive science, with the bless-
ing of “theory-construction,” has been successful: count the num-
ber, since 1955, of papers given at meetings and published in
refereed journals, then duly summarized in “secondary sources.”
Count the number of kinds of memory discovered by “opera-
tionalizing.”

NHSTP has enabled research to be carried out easily; computer
programs can both produce and analyze data, all but untouched by
human hands – or thought. Doing such research is easier than
observing, counting, and classifying. That most findings are trivial,
that the theories are all but irreconcilable, that answers to most
questions lie buried under ten to the nth bytes of “information” is
becoming evident. A cognitive scientist now wonders publicly
whether they’ve been “spinning (our) wheels” for the past thirty
years or so.

Behavioral science needs data on the individual behaviors of
individual organisms, each finding “verified” – replicated – by
data taken from a number of other individuals, one by one. The
visual methods introduced by Tufte, non-parametric “quick and
dirty,” and descriptive statistics (excluding means and standard
deviations), suffice in testing generalizations, confirming or dis-
confirming them.

Four reasons why the science of psychology
is still in trouble

Kim J. Vicente
Cognitive Engineering Laboratory, Department of Mechanical and Industrial
Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
benfica@mie.utoronto.ca www.ie.utoronto.ca/IE/HF/kim/home.html

Abstract: Chow’s monograph exhibits four prototypical symptoms of
psychology’s enduring scientific crisis: (a) it equates empirical science with
statistical analysis; (b) it settles for qualitative rather than quantitative
theories; (c) it ignores the role of ecological validity in the generalizability
of theories; and (d) it puts rigid adherence to arbitrary but documentable
rules over critical thinking about the meaning of results.

Chow’s exceptionally well-written monograph shows why the
science of psychology is in trouble, an opinion that has been
consistently expressed by prominent psychologists over a distur-
bingly long period (e.g., Allport 1975; de Groot 1990; Gibson
1967/1982; Hammond et al. 1986; Loftus 1996; Meehl 1967; 1978;
Neisser 1976; Newell 1973). Specifically, Chow’s monograph ex-
hibits four typical symptoms of psychology’s enduring crisis.

1. Empirical science 5 Statistical analysis. Chow equates
empirical science with statistical analysis of data from highly
controlled experiments. This view is partially conveyed in the very
first sentence of the book: “To conduct empirical research is to
engage in an exercise which requires conceptual, theoretical and
statistical skills” (p. ix, emphasis added; see also p. 168). This view
is re-emphasized in one of the last sentences of the book: “At a
minimum an empirical research is good if it has statistical conclu-
sion validity and inductive conclusion validity” (p. 187). Both of
these opinions would come as a surprise to Nobel Laureate
Konrad Lorenz (1973), who not only did not exhibit statistical skill
in his research, but never even published a paper with a graph in it!
Instead, Lorenz devoted his life to describing and identifying
phenomena as they occurred in nature. His rationale was that
naturalistic observation is a legitimate form of empirical science
which should precede formalization, quantification, and con-
trolled experimentation. Before one can meaningfully formalize,

quantify, or experiment, one should identify a natural phenome-
non that is worthwhile investigating in more detail, and categorize
the dimensions of that phenomenon to know what should be
manipulated experimentally. Lorenz’s rich, multi-faceted view of
empirical science contrasts with the impoverished, unidimensio-
nal view that Chow refers to as “the scientific procedure” (p. 42,
emphasis added).

Perhaps because of a preoccupation with statistical analysis,
Chow undervalues the role of theory and intuition in science. For
example, he states that psychology is an “empirical discipline”
(p. 164), that theories are speculative (pp. 46, 61), and that the
term “theory” has grandiose connotations (p. 46). Holton (1988), a
well-known historian of science, has observed and criticized this
narrow view of science: “The younger sciences . . . are now
(erroneously, in my opinion) trying to emulate the older physical
sciences by restricting their area of investigation, even if arti-
ficially, to . . . phenomenic (empirical) and analytical statements”
(p. 3). But as Holton’s rich case studies illustrate, science is much
more than this, encompassing naturalistic observation, qualitative
description and categorization, inductive leaps of faith, and axioms
that can never be empirically tested. Again, Chow’s view of science
is comparatively narrow, a fact that has important implications (see
below).

2. Settling for low-hanging fruit. Chow also claims that “the
exact magnitude of the effect plays no role in the rationale of
theory corroboration” (p. 96). This is certainly true, if the intent is
to capture most existing theorizing in psychology. However, it
overlooks the fact that there are a continuum of theories, allowing
us to make predictions about the impact of the independent
variables on dependent variables with increasing specificity. Areas
on this continuum include: categorical, ordinal, interval, and point
predictions. As the preceding quote makes clear, Chow believes
that these last two categories play no role in theory corroboration.
But surely a theory that makes more specific predictions (e.g.,
Simonton 1997) is a more mature theory, and one that we should
be seeking (Meehl 1978)? By overlooking this point, Chow is
settling for “low-hanging fruit” rather than striving to develop
more sophisticated and powerful theories.

3. A science of the laboratory. On the one hand, Chow claims
that psychologists take the external validity of experiments very
seriously (p. 92). On the other hand, he follows Ebbinghaus’s
(1885/1964) legacy, stating that ecological validity is detrimental
to the validity of theory-corroboration experiments (pp. 102, 171).
It is difficult to reconcile these two statements. The fact is that
external validity has not been taken very seriously by many
psychologists because of an effort to keep the experimental setting
“pure” and cleansed of the rich details that characterize ecologi-
cally valid settings (e.g., Banaji & Crowder 1991). As a result, many
psychological results do not generalize beyond the experimental
laboratory. As Neisser (1976) puts it, “the artificial situation
created for an experiment may differ from the everyday world in
crucial ways. When this is so, the results may be irrelevant to the
phenomena that one would really like to explain” (p. 33). And as
Gibson (1967/1982) observed, “when a science does not usefully
apply to practical problems there is something seriously wrong
with the theory of the science” (p. 18).

4. Cargo-cult science. Finally, Chow also holds “objectivity,”
“rigor,” and “integrity” as the holy grails of scientific criteria.
Perhaps the most extreme example of this attitude is the claim that
treating p 5 0.048 and p 5 0.052 differently is “doing the right
thing” (p. 97). The fact that there is no ontological basis for doing
so (Rosnow & Rosenthal 1989) is given secondary importance (see
also n. 3 on p. 118). Chow prefers “rigid adherence” (p. 97) to
arbitrary but documentable rules over thinking critically about the
meaning of results if the latter involves criteria that are not
completely objective. In doing so, Chow (p. 168) overlooks the fact
that science inevitably involves making decisions that involve
intuition, aesthetics, and subjective preferences (Holton 1988).

The cause of this attitude may lie in the “physics-envy” that has
plagued psychology since its inception. The result is cargo-cult
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science – research that seems to follow the norms of scientific
investigation, but that nevertheless misses something essential
(Feynman 1985). The shackles imposed by such a restricted view
of rigorous science may explain, for example, why the first 100
years of memory research largely served to confirm what the
average middle-class third-grader already knows about human
memory (Kreutzer et al. 1975).

Conclusion. If we follow Chow’s logical arguments, we will
continue to have a science of psychology that holds a narrow view
of science, that only seeks weak qualitative theories, that has little
to say about activities outside of the laboratory, and that strives so
hard to look like “real science” that it puts itself into an intellectual
straitjacket. After over a 100 years of experience, we should know
better than to repeat the errors of our predecessors.
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Statistics without probability: Significance
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data analysis
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Abstract: Statistical significance is almost universally equated with the
attribution to some population of nonchance influences as the source of
structure in the data. But statistical significance can be divorced from both
parameter estimation and probability as, instead, a statement about the
atypicality or lack of exchangeability over some distinction of the data
relative to some set. From this perspective, the criticisms of significance
tests evaporate.

Chow (1996) equates statistical significance with the rejection of
“chance influences” as an explanation for patterning or structure
in the data, such a rejection then serving a very limited but
important role as inductive evidence (in the form of corroborating
an experimental implication) in a hierarchical, logical argument in
support of a to-be-corroborated theory. He argues cogently that by
correctly recognising the different levels of this logical argument,
and the position of statistical significance within it, many of the
criticisms of significance tests and equally the proposed remedies
offered can be seen to be either irrelevant or misplaced. This
laudable, point-by-point deconstruction and refutation of critics’
arguments is in line with, but exceeds in depth those of other
recent defenses of null hypothesis testing (Frick 1996; Greenwald
et al. 1996; Hagen 1997; Macdonald 1997), as well as earlier
attempts of his own (e.g., Chow 1988). As far as these arguments
go, I am in thorough agreement. But they don’t go far enough.

With very few exceptions (e.g., May et al. 1990), significance
tests are routinely presented in textbooks as probability-based,
binary statements about population parameters. Null hypotheses
are stated in terms of population parameters (e.g., m1 5 m2 or m1 2
m2 5 0), and the principal result of a significance test is the
conditional probability of the data, given the null hypothesis,
p(dataunull) (which includes random sampling from a specified
population distribution, typically normal). Critics and defenders
alike, Chow included, appear to accept this representation as
canonical, generally in the example form of a t-test for indepen-
dent samples. It would appear that this conflation of significance
testing with random sampling from populations and, hence, pa-
rameter estimation and probabilistic inference is responsible for
much of the debate about significance testing.

If significance testing is accepted as synonymous with this one
representation, then the criticisms of significance testing outlined
by Chow, such as that the null can never be true, that what is really

desired is the inverse probability of the null given the data rather
than the data given the null, that confidence intervals around
estimates of population parameters are preferable to a simple
binary decision about them, and that the Bayesian or subjective
probabilistic approach is preferable to the frequentist can appear
reasonable, even conclusive. But the logic of significance testing,
especially for theory-corroborative research, does not require
parameter estimation and random sampling, as attested to, inter
alia, by randomisation testing and other nonparametric (e.g., rank
based) permutation tests (e.g., Edgington 1966; 1995; Fisher
1935; Hunter & May 1993; Kempthorne 1955; Pitman 1937a;
1937b; 1937c), and by the fact that for theory-corroborative
research – the focus of Chow’s exposition – random-sampling and
inferences about extant populations are not necessary, may often
be undesirable (e.g., Eysenck 1975; Mook 1983), and are fre-
quently unobtainable (or at least intentionally unobtained) in
behavioural research (e.g., Hahn & Meeker 1993). These ap-
proaches are not merely approximations to parametric tests, even
though they are often presented as such; they represent a funda-
mentally different conceptualisation of statistical inference (e.g.,
Camilli 1990). Clearly, if there is no random sampling then there
can be no estimates of and inferences about population parame-
ters; the null hypotheses in these cases refer to effects in particular
samples with the statistical validity provided by an assumption (or
act) of random assignment rather than random sampling.

The idea can be taken further to eliminate also the dependency
on probabilistic (random) considerations, eliminating the
probability-based criticisms of statistical significance in the pro-
cess. Rouanet et al. (1986) discuss significance testing as the
assessment of what they refer to as the typicality of the data
relative to some specified set with regard to some aspect or
measurement. Although the usual probability calculus is used, no
probabilistic considerations are involved. Instead, the 0–1 range
of probabilities is used as a scale of typicality, and the resulting
“p-values” are not taken as probabilities, but as the proportion of
the different groups of observations from the specified set that are
at least as extreme as the obtained one.

For example, with the canonical t-test in mind, consider two
groups of 4 observations each. The result that the four highest
scores all fall in one group is “significant” in that of the set of all
possible ways of dividing 8 scores into two groups of 4, less than 5%
(1 out of 70) would be this extreme. That is, the result is atypical of
the specified set, and remains so regardless of the basis of forming
the groups in the first place (i.e., whether or not any random
process was involved). If, for example, the 8 scores were the
heights of 4 adult males and 4 adult females, the result of the four
tallest falling in the male group is still atypical of the permutations
of the set, however highly probable or expected the result is. The
same would be true if the result were coded as, say, a mean
difference, a t-statistic, or an F-ratio; and of the 70 permutations of
the scores, less than 5% of the statistics of the set were as extreme
as the observed one.

The reference set need not be restricted to values directly
observed. The atypicality or “significance” of a result or collection
of scores can be computed relative to any set, including infinite
sets. In these cases, the distribution of the set statistics would be
obtained from the more traditional sampling distributions (e.g.,
normal, x-square, etc.) for the determination of the p-values. With
the appropriate assumptions (e.g., random-sampling or ran-
domisation), any of these p-values could be converted to proba-
bilities, but it is not obvious what would be gained by such a move,
unless the assumptions were true.

Similar arguments have been advanced by Draper et al. (1993),
for whom significance testing is seen as an assessment of ex-
changeability (i.e., can the scores be seen to be exchangeable or
equivalent over some distinction, e.g., sex, with respect to some
aspect, e.g., height, relative to some set, e.g., the set observed, or
some larger set?). From these perspectives, statistical significance
is not about the rejection of “chance influences,” but rather simply
a statement about the presence or absence of structure (lack of
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exchangeability) in the data. Ascertaining the putative source of
the structure and its extension or generality is, as always, a function
of other aspects of the research design and the theory-
corroborative argument. It would appear to be this meaning of
statistical significance or something like it that is implicit in the
vast amount of behavioural and other research for which neither
random-sampling nor assignment is claimed, but for which a
presumably meaningful “statistically-significant” result is reported
nonetheless.

The non-significance of straw man
arguments

Niels G. Waller1 and Wesley O. Johnson2

1Department of Psychology, University of California, Davis; 2Division of
Statistics, University of California, Davis, Davis CA, 95616.
ngwaller@ucdavis.edu psychology.ucdavis.edu/waller

Abstract: We demonstrate that Statistical significance (Chow 1996)
includes straw man arguments against (1) effect size, (2) meta-analysis,
and (3) Bayesianism. We agree with the author that in experimental
designs, H0 “is the effect of chance influences on the data-collection
procedure . . . it says nothing about the substantive hypothesis or its logical
complement” (Chow 1996, p. 41).

Chow wisely reminds us, as have others before him, that (1) we
must carefully distinguish substantive theory from statistical hy-
pothesis (cf. Meehl 1978; see also Bolles 1962); that (2) as a
decision procedure, NHSTP plays only a very limited role in
empirical research; and that (3) “statistical conclusion validity and
practical validity belong to two unrelated or independent domains
(Chow 1996, p. 108). Few readers will quibble with these claims.
Considered in globo, however, we suspect that Chow’s book will
invite much criticism because it is considerably more catholic and,
like the fields at Rothamsted Experimental Station, it is filled with
straw men.

Even the book’s title is misleading because it suggests a tho-
rough treatment of null hypothesis testing. Yet Chow focuses
exclusively on NHSTP “in the context of experimentation because
two prominent critics of NHSTP [apparently Cohen and Meehl]
have made the point that their criticisms of NHSTP are directed
to non-experimental studies” (Chow 1996, p. xi). We wonder
whether Chow agrees with these critics – in the context of quasi-
or non-experimental studies – that statistical hypothesis inference
testing (like Cohen, we will avoid the acronym) “has not only failed
to support the advance of psychology as a science but also has
seriously impeded it” (Cohen 1994, p. 997) or that significance
testing is “a potent but sterile intellectual rake who leaves in his
merry path a long train of ravished maidens but no viable scientific
offspring” (Meehl 1967, p. 265)?

Straw man arguments against effect size. In Chapter 5, Table
5.1, Chow offers four studies that putatively illustrate the “ambi-
guity arising from the dependence of statistical significance on the
sample size” (Chow 1996, p. 90). For illustrative purposes, these
data are reproduced in Table 1. Notice that there are several
features of this table (which we have faithfully reproduced) that
invite confusion. For example, notice that Chow uses lowercase
Greek letters (mE, mC) to denote statistics – that is, sample
estimates of population parameters – whereas in earlier chapters
he used (the more traditional) Roman uppercase letters (e.g., XE,
XC). Notice also that the Yes/No entries in the table have no
apparent relation to the other columns. For instance, if we assume
that the experimental and control conditions have equal variances
and sample sizes then none of the test statistics surpasses conven-
tional threshold values.

Nonetheless, Chow asks us to consider studies C and D because
they supposedly illustrate the “incommensurate significance-size
problem critique of NHSTP.” According to this critique it is
paradoxical to consider the results of Study C nonsignificant when

Table 1 (Waller & Johnson). Chow’s Table 5.1: The putative
ambiguity and anomaly of significance tests illustrated

with four fictitious studies

Study uE uC

Effective size*
d 5 uE 2 uC)/sE

Statistical test
(e.g., t) significant? df

A 6 5 .1 Yes 22
B 25 24 .1 No 8
C 17 8 .9 No 8
D 8 2 .5 Yes 22

*J. Cohen (1987)

the effect size in Study C is almost twice as large as that in Study
D. Chow contends that the “incommensurate significance-size
problem critique of NHSTP seems to be predicated on the
assumption that the size of the effect is indicative of the degree of
evidential support for the hypothesis offered by the data” (Chow
1996, p. 91) and he suggests that “it seems intuitively reasonable to
assume that the magnitude of the effect size is indicative of the
degree of evidential support” (Chow 1996, p. 94). The implication
of this straw man argument is that, ceteris paribus, larger effect
sizes provide greater probative weight than smaller effect sizes
(Chow is arguing against this position).

We believe that strong theories generate point predications (or
predictions of functional forms, e.g., exponential growth) and
weak theories generate range predictions (e.g., the correlation will
be between .3 and .7, see Lykken 1991; Meehl 1990), although we
realize that most social scientists eschew anything but ordinal
predictions. Point and range predictions are easier to make when
measuring instruments are linked to a common metric (Waller et
al. 1996). We also believe that when investigators make theoreti-
cally informed predictions of effect sizes it is “reasonable to
assume that the magnitude of the effect is indicative of the degree
of evidential support.” Observations that are close to their theoret-
ically predicted values provide more support for a theory than
those that are relatively distant (see Meehl 1990 for further
discussion of this point). For instance, if scales E and F putatively
measure constructs G and H, the latter being theoretically dis-
tinct, then rE,F 5 .9 does not support the discriminant validity of E
or F or the theoretical distinctiveness of G and H. Moral: effect
sizes can be too large. Chow does not consider this issue because
he contends that “only qualitative information is required in
theory corroboration” (1996, p. 112, emphasis added).

Straw man arguments against meta-analysis. Chow also be-
lieves that meta-analysis is seriously flawed as a research tool
because “research quality is not deemed important” (p. 110). For
instance, he claims “[m]any more meta-theoretical issues arise if
meta-analysis is used as a theory-corroboration tool . . . [such as]
the unjustifiable disregard for the quality of the research” (p. 112).
We find these sweeping statements unfounded and puzzling
because they suggest that Chow is unfamiliar with current meta-
analytic practice.

Detailed procedures for weighting research quality have been
discussed in the meta-analytic literature for more than a decade
and a half (e.g., see Rosenthal 1984, pp. 54–62). In physics, for
example, Hedges (1987) notes that differential weighting of pa-
rameter estimates is standard practice in meta-analytic summaries
of physical constants and that physicists routinely disregard up to
40% of available studies. Psychologists have also paid attention to
research quality and, interestingly, they find that the incorporation
of questionable research (however defined) generally does not
bias meta-analytic conclusions because biases which are intro-
duced by poor studies typically average out with aggregation
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(Lipsey & Wilson 1993; see Utts 1996, Ch. 25, for an excellent
introduction to the topic of meta-analysis).

Statistical significance is brimming with syllogisms, minor
premises, and other tools of formal logic and thus it is doubly
surprising to hear Chow claim that “conceptual rigour is not an
issue in meta-analysis, as may be seen from the fact that some
meta-analysts deny the distinction between good and poor re-
search (Chow 1996, p. 110, emphasis added). The illogical nature
of this reasoning seems obvious to us and reminds us of a passage
from Fisher’s Statistical methods and scientific inference. Re-
counting Venn’s diatribe against the rule of induction, Fisher
noted that “it seems that in this chapter Venn was to such an extent
carried away by his confidence . . . that he became uncritical of the
quality of the arguments he used” (Fisher 1973, p. 28).

Straw man arguments against “Bayesianism.” Chow appears
to treat “frequentistism” as if there were no subjective aspects (cf.
Berger & Berry 1988). On the other hand, he also appears to be
making the assumption that virtually all data of interest to him
would be collected as random samples from normal populations
with equal variances between samples. Nowhere in his treatise do
we find mention of the importance of checking these assumptions
in order to be reasonably confident in final inferences. His
invocation of the central limit theorem would of course only apply
to large sample situations in which case there would be no need to
mention Student’s t distribution (Hogg & Tanis 1993, p. 432).

Although sequential analysis, hypothesis testing, and decision
theory are substantial areas of emphasis that are studied in both
Bayesian and frequentist modes (Berger 1985; Berry & Lindgren
1996; DeGroot 1970; Ferguson 1967; Kass & Raftery 1995;
Siegmund 1985), there is no requirement in Bayesianism or
frequentistism that data be looked at sequentially, that hypotheses
either be tested or not, or that decisions of any kind be made. If
Bayesianism had caught on before frequentistism, standard statis-
tical practice might well have required that the posterior proba-
bility for the null be less than or equal to .05 in order to decide in
favor of the alternative. This would not be a property of the
Bayesian approach; it would merely be a property of common
statistical practice which utilized the Bayesian mode of inference.
And in our opinion, it would be just as silly as the current practice
of using a .05 cut off for p-values.

We would further argue that there are few single experiments
for which the ultimate conclusion, reject or not, would convince
the scientific community at large of a real effect. We expect that it
will only be after repeated experimentation and an accumulation
of evidence that the scientific community will reach some form of
consensus as to the presence of a real statistical effect. This
observation, it seems to us, puts the .05 criterion in its proper
place. For example, if study after study, with moderate or small
sample sizes, resulted in either posterior probabilities or p-values
in a neighborhood of .06 and if the “effect” was both consistent
across studies and of real importance (cf. Utts 1996, Ch. 24), it
would seem foolish indeed to deny the existence of a real phenom-
enon.

We would finally argue that the personalistic vs. frequentist
dichotomy alluded to by Chow is not correct. Both types of
probability exist and there need be no resultant inconsistency.
Frequentists and Bayesians would probably agree that probability
associated with the sampling distribution of the data is frequentist.
It is also likely that both groups would agree that the probability of
rain tomorrow would have to be based on a subjective determina-
tion and could only be given a frequentist interpretation by
thinking about multiple tomorrows, a possibly dubious construct.
The only real issue here is that “diehard frequentists” would
simply be unwilling to specify such a probability: if they were
willing to do so, there would be no disagreement as to how to cope
with the mix of subjective and so called objective probabilities
from the prior probability and likelihood, which would be merged
via Bayes Theorem, regardless of one’s religious persuasion.

In summary, we agree with what we perceive to be Chow’s
cardinal thesis in Statistical significance, namely, that in experi-

mental designs, H0 is “the hypothesis about the effect of chance
influences on the data-collection procedure . . . it says nothing
about the substantive hypothesis or its logical complement (Chow
1996, p. 41). We only wish that Chow had made this point without
senselessly attacking other important and useful statistical con-
cepts, such as effect sizes and confidence intervals, meta-analysis,
Bayesian posterior distributions, and point predictions.

A viable alternative to null-hypothesis testing

Bruno D. Zumbo
Departments of Psychology and of Mathematics, University of Northern
British Columbia, Prince George, B.C. V2N 4Z9, Canada.
zumbob@unbc.ca quarles.unbc.ca./psyc.edgeworth2.html

Abstract: This commentary advocates an alternative to null-hypothesis
testing that was originally represented by Rozeboom over three decades
ago yet is not considered by Chow (1996). The central distinguishing
feature of this approach is that it allows the scientist to conclude that the
data are much better fit by those hypotheses whose values fall inside the
interval than by those outside.

Of all the concepts in scientific methodology, statistical signifi-
cance testing (and in particular null hypothesis testing, NHT) has
the noble distinction of simultaneously being: (a) criticized
fiercely and disavowed, and yet (b) guarded as one of our sacred
cows. This distinction can be clearly seen in Chow’s (1996) book.

Even though they have been vast in number, the criticisms of
NHT will continue to have little impact until something better is
offered to the practising scientist. Chow discusses many of the
commonly suggested alternatives to NHT (i.e., effect sizes and
conventional confidence intervals), however he is clearly less than
sanguine about them (for example see pp. 5, 87, and 98 of the
book). The primary purpose of this commentary is to remind the
readers of an alternative to NHT that I believe was not presented
by Chow (or, for that matter, in most other discussions of statistical
significance) and is a contender as a viable alternative.

Workable alternative to NHT. It is important to remember that
the alternative presented herein was first offered over 35 years ago
(Rozeboom 1960) but it appears we have ignored it until recently.
In fact, as in Chow (1996), Rozeboom’s paper is often cited as
being one of the first and most penetrating criticisms of NHT, but
what is not often mentioned is that Rozeboom also offers a
workable alternative to NHT in the form of confidence intervals
(although it is essential to note that he does have a particular
interpretation of them).

Briefly, as a metascientific foundation, following Rozeboom
(1960), it can be shown that instead of using hypothesis testing as
the ultimate mechanism through which we make decisions and
commit ourselves to action on the basis of experimental data, we
should use a methodology that reflects the scientific process as a
cognitive activity. That is, the scientific process is a cognitive
activity in which we make an appropriate adjustment in the degree
to which we accept or believe knowledge claims given the empiri-
cal finding(s) at hand.

Conventional confidence intervals are encountered by most
students of the social and behavioral sciences. However, to be
useful as an alternative to NHT, confidence intervals should not be
interpreted simply in terms of probability of coverage, as is often
taught in introductory courses, but rather as an impartial simul-
taneous evaluation of all the alternatives under consideration for
the current data. Quite simply, by using confidence intervals a
scientist can conclude that the data are much better fit by those
hypotheses whose values fall inside the interval than by those
outside. Note that in Rozeboom’s suggestion the commonly used
5% chance of error refers to the incorrect simultaneous dismissal
of a large part of the total set of alternative hypotheses and is the
total likelihood of error, not just of Type I.

Rozeboom’s interpretation of confidence intervals is not the
current norm of what is taught in statistical science textbooks or
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used in scientific practise. A semblance of Rozeboom’s suggestion
can be seen, however, in Mosteller and Tukey’s (1977) classic
textbook wherein they introduce the one-sample t-test and end
their discussion of testing against various hypothesized population
means by stating, “It [a hypothesized population mean] might take
on, in turn, all possible values, as when we seek a confidence
interval” (p. 3).

Two points are noteworthy at this juncture. First, the Rozeboom
interpretation of confidence intervals appears to me, at least on a
surface level, to be akin to Bayesian credibility intervals (or highest
density regions). In this same light, it should be noted that it is
inherent in the Bayesian (and also the fiducial) approaches to
confidence intervals that the parameter in question is, in some
sense, random. It is important to note that this is not the case for
more commonly used probability of coverage perspectives on
confidence intervals, where only the interval is random and may or
may not cover the fixed but unknown value of the quantity we are
trying to estimate. Second, Rozeboom’s description of confidence
intervals could also be achieved in the framework of likelihood
theory (Edwards 1972).

We take Rozeboom’s suggestion one step further by systematiz-
ing the process of combining new results with existing knowledge.
That is, rather than an unspecified reference to an adjustment in
the degree to which we accept or believe knowledge claims, in
some situations it is better handled more systematically by compu-
tational aids such as Bayes’ theorem or empirical Bayesian
methods.

Rozeboom’s suggestion could accordingly be interpreted in our
current climate of anti-NHT as suggesting that rather than salvage
the sacred cow of hypothesis testing, we butcher the beast and
move to a more nutritious feast offered to us over three decades
ago. The main course at this feast would be an ample serving of
easily used techniques that are useful to scientists, because these
techniques would allow them to conclude that given the: (a) design
for obtaining the data, (b) measurement error, and (c) stochastic
and deterministic assumptions of the specified family of statistical
models, the current data are much better fit by the parameters
(and hence hypotheses) inside the confidence interval than by
those outside.

Author’s Response

The null-hypothesis significance-test
procedure is still warranted

Siu L. Chow
Department of Psychology, University of Regina, Regina, Saskatchewan,
Canada S4S 0A2. chowsl/@leroy.cc.uregina.ca

Abstract: Entertaining diverse assumptions about empirical
research, commentators give a wide range of verdicts on the
NHSTP defence in Statistical significance. The null-hypothesis
significance-test procedure (NHSTP) is defended in a framework
in which deductive and inductive rules are deployed in theory
corroboration in the spirit of Popper’s Conjectures and refutations
(1968b). The defensible hypothetico-deductive structure of the
framework is used to make explicit the distinctions between (1)
substantive and statistical hypotheses, (2) statistical alternative and
conceptual alternative hypotheses, and (3) making statistical deci-
sions and drawing theoretical conclusions. These distinctions make
it easier to show that (1) H0 can be true, (2) the effect size is
irrelevant to theory corroboration, and (3) “strong” hypotheses
make no difference to NHSTP. Reservations about statistical
power, meta-analysis, and the Bayesian approach are still war-
ranted.

R1. Introduction

For ease of exposition, “NHSTP defence” is used to refer to
the defence of the null-hypothesis significance-test proce-
dure (NHSTP) presented in Statistical Significance. “Syn-
opsis” refers to the synopsis of the NHSTP defence, and
“rejoinder” refers to the present response to the commen-
taries. There are four main reasons for the wide range of
verdicts on the NHSTP defence. First, commentators en-
tertain disparate ideas about various aspects of empirical
research. Second, logistic concerns of empirical research
sometimes make it impossible to observe the nuances
important to philosophers, logicians, or statisticians
(Kraemer, Mayo). Such departures may be justified when
no logical or mathematical rule is broken.

The third reason is the use of the collective terms
“power analysts,” “meta-analysis,” and “Bayesian” to dis-
cuss critically particular versions of these techniques in
order not to sound personal and to indicate that the criti-
cisms are about the ideas, not their proponents. The
fourth reason is the need to distinguish between a tech-
nique and the assumptions about empirical research held
by experts who use it. If the NHSTP defence were a
critique of Bayesian statistics, meta-analysis, and power
analysis at the technical level, it would be necessary to
direct the criticisms at their more recent, mature ver-
sions. The critique, however, is about what power an-
alysts, meta-analysts, and Bayesians think about empirical
research.

It is argued in the NHSTP defence that the validity of the
theory-corroborative experiment is assessed in terms of
conceptual, theoretical, and methodological criteria, not a
numerical index, an account accepted by some commenta-
tors in general terms (Boklage, Hayes, Tassinary, Thyer,
Vokey). Specifically, it is essential that the substantive
explanatory (hence, not necessarily quantitative) hypoth-
esis to be tested be consistent with the phenomenon to be
understood in a nontautological way. The experimental
hypothesis should be a valid deduction from the substantive
hypothesis in the context of the specific experimental task.
The exclusion of recognized alternative explanations is
made possible when data are collected and analyzed ac-
cording to the experimental design that satisfies the formal
requirements of an inductive rule (e.g., Mill’s [1973]
method of difference). NHSTP is used to exclude chance
influences as an alternative explanation of the data (i.e., to
choose between chance and nonchance). Using the
NHSTP outcome, the experimenter interprets the data
with reference to the implicative relationships among the
substantive, research, and experimental hypotheses (i.e., to
isolate what the nonchance factor is). What the experimen-
tal data mean at the conceptual level is determined by the
theoretical foundation of the experiment, not by statistics or
any other nonconceptual concerns (e.g., the practical im-
portance of the result).

The issues that will be discussed in the present response
are (1) the propriety of using statistics in psychological
research, (2) the formal structure of scientific investigation
versus the sociology of science, (3) the differences between
substantive and statistical hypotheses, (4) the validity of the
hypothetico-deductive framework, and (5) some reserva-
tions about effect size, statistical power, meta-analysis, and
Bayesian statistics.
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R2. The historical perspective

The NHSTP defence is a rationalization of cognitive psy-
chologists’ modus operandi, namely, conducting theory-
corroboration experiments in Popper’s (1968a; 1968b)
“conjectures and refutations” framework. The outcome of
NHSTP is used to start the chain of syllogistic arguments
that leads to the theoretical conclusion. The issue is
whether or not it is wrong from the historical perspective.

R2.1. Neyman and Pearson and the inverse probability.
Reading too much into a statement made by Neyman and
Pearson (1928), I suggested that they subscribed to using
the inverse probability. This was a mistake (Gregson,
Krueger, Kyburg, Mayo, Poitevineau & Lecoutre).

R2.2. Statistics and nomothetic research. Statistics is used
when the concern is about what can be said about a well-
defined group of individuals (i.e., nomothetic) rather than
of individuals as unique beings (i.e., idiographic). Stam &
Pasay as well as Verplanck raise the possibility that the
NHSTP defence perpetuates a historical error, namely, the
error psychologists made when they were diverted from
doing idiographic research as a result of using statistics.
However, there are qualities that are found in all members
of the group. Statistics is used to describe how these
properties are distributed among the members of the
group. For example, the mean of the group is sensitive to
the magnitude of individual scores. To use the mean to
represent the group is to describe how the individuals are
distributed along the dimension in question, not to suggest
that individual differences are not important. Statistics is
used in nomothetic research to ascertain what is true of the
group, despite individual differences.

The uniqueness of X is described in terms of how X
differs from others in terms of demeanor, dress code, tastes,
social skills, and the like. This description is meaningful
only when there is information about the demeanor, dress
code, tastes, social skills, and the like, common to the group.
That is to say, statements in idiographic research are mean-
ingful only against the backdrop of nomothetic research.

There is another reason why using statistics is not incom-
patible with idiographic research. Suppose that it is neces-
sary to ascertain individual X’s memory capacity. Not only is
X different from other individuals, there are also intra-
individual differences in different situations or on different
occasions. It is legitimate to ask what X is really like, despite
such intra-individual differences. Statistics (particularly
NHSTP) can, and should, be used for such a purpose.

R2.3. The hybrid nature of NHSTP. The hybrid NHSTP is
faithful to neither the Fisherian account nor that of Ney-
man and Pearson (Gigerenzer 1993). For example, from
Neyman and Pearson’s approach is adopted the practice of
fixing the critical associated probability (p) before data
collection and of making a binary decision about H0. The
features from Neyman and Pearson render NHSTP rigid
and mechanical. From Fisher what is adopted is his appeal
to only one numerically nonspecific H1 as a complement of
H0. To critics, this Fisherian feature is responsible for
discouraging numerically specific hypotheses in psychology
when NHSTP is used. Hence, using NHSTP impedes
theory development (Gigerenzer) and prevents researchers
from engaging in two types of “statistical thinking.”

The “rigid” and “mechanical” characterizations of
NHSTP are correct. Nonetheless, “strict” is a better charac-
terization than “rigid.” The rigidity is necessary for inter-
researcher agreement. The issue is really not that the
decision is rigid, but whether it is well defined and appro-
priate. The meaning of the associated probability, p, of the
test statistic is well defined in terms of the sampling
distribution in question. It is appropriate as an index of the
decision maker’s strictness.

Three issues seem relevant when one asks why p 5 .048
is treated differently from p 5 .052 (Krueger, Vicente).
First, the choice of a 5 .05 is called into question. The
answer is simply that the rationale of NHSTP is not affected
if any other value is chosen for a. Second, the importance of
using a in a strict manner may be seen by considering why it
is important for a teacher to maintain a consistent passing
grade. The third issue concerns why it is necessary to fix the
a level before data collection (Lewandowsky & May-
bery). The reason is that all design and procedural deci-
sions about the experiment are made with reference to a as
the criterion of strictness used to reject chance. Had a
different a value been used, concomitant changes in the
design or procedure would have to be made.

It bears reiterating that “mechanical” is not a derogatory
term. A mechanical procedure is one that guarantees the
same outcome if it is carried out properly. Hence, using
NHSTP does not render an experiment a “mindless” exer-
cise. Cognitive psychologists do engage in Gigerenzer’s
Type I “statistical reasoning,” namely, choosing among
alternative statistical procedures in an informed way. Nor
does using the mechanical NHSTP release the researcher
from the need to consider other conceptual, theoretical,
and methodological factors.

R3. The Popperian structure

NHSTP is defended by illustrating its important, though
very restricted, role in the theory-corroboration experiment
in Popper’s (1968a; 1968b) “conjectures and refutation”
perspective. It is not clear why Shafto denies NHSTP’s
contribution. The defence can be strengthened by settling
the following issues suggested by Erwin, Glück & Vi-
touch, Gregson, Nester, and Waller & Johnson: (1) the
effect of auxiliary assumptions on using modus tollens,
(2) the sociology of science, (3) the invalidity of affirming
the consequent, and (4) the neglect of theory discovery.

R3.1. The implication of auxiliary assumptions on modus
tollens. Glück & Vitouch refer to Folger’s (1989) point
that the experimental expectation is the implication of the
conjunction of the substantive hypothesis and additional
auxiliary assumptions. Hence, modus tollens does not guar-
antee the rejection of the experimental hypothesis because
the experimenter may blame the auxiliary assumptions.
Chow’s (1989) reply was that a responsible, well-informed,
and noncynical experimenter should have good reasons not
to blame the auxiliary assumptions in the face of an unex-
pected result. The reasons are (1) the specificity of the
substantive hypothesis, (2) the methodological assumptions
commonly held by workers in the same area of research,
and (3) the well-established theoretical ideas in cognate
areas. If there are good reasons to suspect any of the
auxiliary assumptions, the experimenter is obliged to con-
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duct additional experiments to substantiate the suspicion.
Using auxiliary assumptions does not mean being cynical or
cavalier toward research.

R3.2. The formal structure versus the sociology of sci-
ence. The issue of the sociology of science is raised (Greg-
son) because scientists do not behave in the way envisaged
in the Popperian perspective. This sentiment is reinforced
by Glück & Vitouch’s reference to Lakatos’s rendition of
Popper’s framework. Note that the distinction is not made
in the sociology argument about the formal requirement of
a particular ideal of knowledge and the activities or psychol-
ogy (Blaich) of the professionals in some disciplines. Pop-
per’s is a defensible account of the former if the ideal
consists of the following features:

1. Knowledge evolves by reducing ambiguity.
2. Conclusions must be justified with valid empirical

evidence.
3. There are well-defined criteria for settling inter-

researcher disagreement.
4. Objectivity is achieved when the critical criteria are

independent of theoretical preferences of the disputants.

R3.3. The invalidity of affirming the consequent. Given a
conditional syllogism, it is not possible to draw a definite
conclusion about its antecedent when its consequent is
affirmed. This is the case when H0 is rejected. The interim
solution in the NHSTP defence is that recognized alterna-
tive explanations are excluded by virtue of the experimental
controls. How does the researcher know what constitutes
adequate experimental controls (Erwin)? The researcher is
guided by the formal requirement of Mill’s canons of
induction.

Erwin may legitimately push the point further and ask
what the researcher should do if a confounding variable is
discovered despite having dealt with the “auxiliary assump-
tion” issue (see sect. 3.1). The solution is not just to appeal
to another statistical index in the study in question. It is to
conduct another experiment designed specifically to exam-
ine the confounding variable. The three embedding syl-
logistic arguments, whose sufficiency as a means to estab-
lish “warranted assertibility” is called into question by
Erwin, are also involved in the new experiment.

R3.4. The mechanical syllogistic arguments. Drawing a
theoretical conclusion from the data with a series of three
embedding arguments is a mechanical exercise (Vicente).
However, it does not follow that the hypothetico-deductive
framework is antithetical to critical thinking. The experi-
menter’s critical thinking, intuition, and subjective prefer-
ences have important roles to play in proposing the substan-
tive hypothesis, devising the experimental task, choosing
the appropriate experimental design, and the like. At the
same time, it is important that the influences of these
subjective factors are neutralized in data interpretation. It
is for this reason that experimental controls, as a means of
excluding alternative explanations, are necessary. It is also
for this reason that the NHSTP defence is based on the
theory-corroboration experiment (Waller & Johnson).

R3.5. Converging operations and replication. The various
theoretical properties of a hypothetical structure envisaged
in a cognitive theory have to be substantiated. The series of
experiments designed for such purposes constitute con-
verging theory-corroboration operations. It is emphasized

in the NHSTP defence that these theory-corroboration
experiments are not literal replications of the original study,
because they differ from the original study as well as among
themselves. What should also be said is that literal replica-
tion has a different role, a point made by Tassinary.
Specifically, replication studies are essential for ensuring
that the new discovery is not a fluke. NHSTP is used in each
of the replication studies in the same way it is used in
theory-corroboration studies, namely, to exclude chance
influences as an explanation.

R4. The nature of the substantive hypothesis

Substantive hypotheses are speculative explanations pro-
posed to explain phenomena. Research data are collected
to substantiate these hypotheses. There arises the distinc-
tion between the instigating phenomenon and the eviden-
tial data of the hypothesis as well as the following issues: (1)
alternative conceptual hypotheses versus a statistical alter-
native hypothesis, (2) the nature and role of the effect size,
(3) the nature of a good explanatory hypothesis, and (4) the
numerically nonspecific versus numerically specific statisti-
cal hypotheses.

R4.1. Instigating phenomenon versus evidential data.
Phenomenon P cannot provide the substantiating evidence
for the hypothesis that explains P itself in a nontautological
way. For example, the hypothesis “snake phobia” is pro-
posed to account for the instigating phenomenon of an
individual’s irrational fear of snakes. [See Davey: “Pre-
paredness and Phobias” BBS 18(2) 1995.] Consequently,
this reaction to snakes cannot be used as evidence for the
“snake phobia” explanation without rendering the argu-
ment circular. It is necessary to distinguish between the
phenomenon of which the substantive hypothesis is an
explanation (the instigating phenomenon) and the data that
are used to substantiate the hypothesis (the evidential data).

R4.2. Alternative conceptual hypotheses versus alterna-
tive statistical hypotheses. While the substantive hypoth-
esis explains the instigating phenomenon, the experimental
hypothesis describes what the experimental data should
be like. When the experimental hypothesis is expressed
in statistical terms, it is the statistical alternative hypothe-
sis, H1. This is very different from Zumbo’s recounting
of Rozeboom’s (1960) view of what H1 is. A successful
substantive hypothesis (T) is one that makes the to-be-
explained phenomenon understandable. The experimental
hypothesis serves as the criterion of rejection of T in the
sense that T is deemed untenable if data do not match what
is said in the experimental hypothesis. The statistical null
hypothesis is used to ascertain whether it is possible to
exclude the explanation in terms of chance influences. Dar
however, finds the distinctions among the substantive,
research, experimental, and statistical hypotheses unneces-
sary.

Of interest is the fact that the substantive hypothesis
(e.g., the view that the short-term store retains acoustic-
verbal-linguistic information) takes the form of delineating
the nature of the psychological structures or mechanisms
underlying the phenomenon of interest. These are qualita-
tive specifications, not quantitative stipulations. Moreover,
the experimental hypothesis is an implication of the hypo-
thetical structure in a particular experimental context. This
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context is not quantitative (e.g., acoustically similar and
acoustically dissimilar materials are used in the experimen-
tal and control conditions, respectively). Seen in this light,
the insistence that a “strong” hypothesis is one that gives a
specific numerical value to a parameter (Vicente, Waller
& Johnson, Zumbo) raised several issues.

R4.3. The nature of a good theory. First, what is the
criterion of a “strong” hypothesis apart from the fact that it
give a specific nonzero parameter value? The characteriza-
tion is not informative if the criterion for being “strong” is
not independent of its being numerically specific. Second, a
hypothesis that is “strong” in this sense is not necessarily a
testable or a more informative hypothesis, as can be seen
from Propositions [P1], [P2], [P3], and [P4]:

There will be 1 inch of snow. [P1]
There will be snow on Christmas day. [P2]
There will be 1 inch of snow on Christmas day. [P3]
There will be snow on Christmas day between 2 and 3
p.m. [P4]

Although [P1] is numerically specific, it is not testable
because it is not clear under what condition [P1] can be
shown to be wrong. [P2] is a testable hypothesis even
though it is not numerically specific in the way [P1] is
specific. It is true that [P3] is testable and more informative
than [P2]. However, the superiority of [P3] over [P2] is a
matter of specificity, not of being quantitative for the
following reason. [P4] is similarly superior to [P2] because it
is more specific. [P3] is “stronger” than [P4] in the sense
envisaged by critics of NHSTP. However, it is not possible
to say which of [P3] and [P4] is more informative. What can
be said is that they are informative in different senses. The
moral of the story is that even if it were possible to ignore
the circularity problem (see sect. R4.1), the “strong” char-
acterization is not an appropriate, let alone the only, crite-
rion for theory assessment (Waller & Johnson). A more
serious objection to the “strong” characterization is that it is
not clear that a “strong” hypothesis is a necessarily explana-
tory hypothesis, as may be seen from [P5]:

Every six hours of practice will improve performance by 3
points. [P5]

Suppose that [P5] is an empirical generalization of practical
importance established after numerous meticulous replica-
tions, and it gives rise to a specific numeric parameter
(Bookstein). Does it explain why such a functional rela-
tionship exists between practice and performance? [P5]
itself invites an explanation. To explain functional relation-
ships such as [P5], appeals to hypothetical mechanisms are
inevitable. Specific theoretical properties are attributed to
these mechanisms. Theory-corroboration experiments are
conducted to substantiate these theoretical properties. This
approach is different from, as well as superior to, the
operationalization suggested by Verplanck. An insistence
on using the “strong” criterion or indifference to hypotheti-
cal mechanisms (Bookstein) may actually impede theory
development if psychologists stop asking the “Why” ques-
tions about statements like [P5].

Recognizing that the substantive hypothesis is more than
a functional relationship between variables, the researcher
would have to consider a number of issues in a light
different from that envisaged by critics of NHSTP. For
example, it becomes necessary to distinguish between an
efficient cause and a material (or formal) cause. Hence,

there are important differences among experimental,
quasi-experimental, and nonexperimental research (Palm),
as well as differences between utilitarian and theory-
corroboration experiments. Specifically, while the outcome
of the experimental manipulation is the phenomenon of
interest in the utilitarian experiment, it is not so in the
theory-corroboration experiment. Although the efficient
cause is the concern of the utilitarian experiment, only the
material (or formal) cause is important to the theory-
corroboration experiment. These considerations change
the complexion of the issues related to the nature of the
statistical hypotheses, effect size, and statistical power.

R5. More ado about the null hypothesis

It is necessary to belabour the point that H1 is not the
substantive hypothesis because it has not been taken up in
the commentaries in the discussion of (1) the nature of H0,
(2) the testing of a numerically specific difference between
test conditions, and (3) how to ascertain that the parameters
are the same in two different conditions.

R5.1. The nature of H0. Some commentators reiterate the
criticism that, as a result of using NHSTP, it is easy to
support weak hypotheses. This criticism was predicated on
the assumption that the null hypothesis is a straw man to be
rejected because it is always false (Rindskopf, Swijtink,
Waller & Johnson). Critics of NHSTP seem to have in
mind a hypothesis that explains or describes a phenomenon
that is a complement of the to-be-explained phenomenon.
They are satisfied that H0 can never be true when it is
shown that such a complementary phenomenon is not
possible.

H0 is neither an explanation nor a description of a
phenomenon that is complementary to the phenomenon to
be explained. Rather, it is derived from the complement of
the substantive hypothesis in exactly the same way that H1
is derived from the substantive hypothesis. H0 can be true
(and should be true in a properly designed and conducted
experiment; see Lewandowsky & Maybery) because it is
a prescription of what the data should be like if what is said
in the substantive hypothesis is not true and chance influ-
ences alone determine the pattern in the data.

Apart from the fact that H0 is not a straw man, it is never
used as a categorical proposition. Instead, it appears as the
consequent in [P6] and the antecedent in [P7]:

If chance factors alone influence the data, then H0 is
true. [P6]
If H0 is true, then the sampling distribution of differences has a
mean difference of zero. [P7]

The cogency of the commentaries is unclear when no
attempt has been made to deal with [P6] and [P7]. For
example, it is neither the case that [P6] is silly (Swijtink)
nor that [P7] is inappropriate (Frick). [P6] is a statement
about what should follow solely from chance influences in
the case of the completely randomized one-factor, two-
level experiment.

R5.2. The case of expecting a numerically specific param-
eter. An objection to NHSTP voiced in the commentaries is
that in resting satisfied with “H1: m 0” or “H1: m . 0” or “H1:
m , 0,” the researcher is distracted from developing a
“stronger” hypothesis that makes it possible to say “H1: mE
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2 mC 5 5,” instead of “H1: mE 5 mC.” Zumbo, as well as
Harris, subscribes to Rozeboom’s (1960) view that there
are multiple H1’s with specific nonzero values. A difficulty
with this position (over and above the one discussed in sect.
R4.3) may be seen by considering the situation that sug-
gests “mE 2 mC 5 5.”

The experimenter is justified in expecting a difference of
5 between the experimental and control conditions when it
is an implication of a functional relationship like [P5] or the
result of a computer simulation (Lashley). However, the
decision about statistical significance is made on the basis of
one sampling distribution of differences. Hence, this ex-
pectation of “mE 2 mC 5 5” is not represented by “H1: mE
2 mC 5 5,” but by “H0: (mE 2 mC) 2 5 5 0” because the
numerator of the t statistic is “(m1 2 m2) 2 5 5 0” (Kirk
1984), and the denominator is the standard error of the
difference.

R5.3. Using H0 to ascertain the equivalence between two
conditions. Some commentators suggest that it may be too
negative to characterize a nonsignificant result as a failure
to reject chance influences (Frick). Instead, NHSTP can
be used in a positive way to ascertain or accept a properly
drawn null hypothesis (Bookstein). The suggestion to use
NHSTP to accept a null hypothesis is reminiscent of Rogers
et al.’s (1993) “nonequivalence null-hypothesis” approach,
the purpose of which is to ascertain statistically that the
parameters (e.g., the means) from two conditions are equiva-
lent.

The “non-equivalence null-hypothesis” approach is de-
batable for the following reasons. First, in view of the role
played by the sampling distribution of the test statistic in
tests of significance, a significant result is one that is
deemed too unlikely to be the result of chance influences.
What can it mean to say that a test statistic is “significant by
chance” (Rogers et al. 1993, p. 554)? Rogers et al. (1993)
seem to have conceptualized their equivalence test at a
level of abstraction different from that of tests of signifi-
cance.

Second, a nonsignificant result is made unambiguous if
statistical equivalence is achieved when the confidence
interval is included in the equivalence interval (Rogers et al.
1993). At the same time, the equivalence between two
conditions is deemed established when the confidence
interval falls within the equivalence interval. The difficulty
of this position is that the equivalence interval is deter-
mined in terms of practical or clinical criteria, not statistical
ones. The width of the equivalence interval is sensitive to
the context, which includes, among other things, the re-
searcher’s vested interests. Objectivity becomes a concern,
especially if the equivalence interval is determined after the
significance test is carried out.

In short, questions about the ambiguity of the result of
NHSTP are questions about data stability, for example,
whether or not (1) the measurements are made properly,
(2) subjects are selected or assigned properly, and (3)
subjects are given sufficient training and the like. These are
not statistical concerns. Nor can they be quantified. Hence,
the equivalence interval cannot disambiguate the ambi-
guity of the statistical decision.

R5.4. Experimental expectation and H0. An implication of
Schneider and Shiffrin’s (1977) model of automatic detec-
tion is that the subject’s reaction time to a target is the same
regardless of the set size (i.e., the number of items in the

briefly shown visual display). In other words, the implica-
tion of the automaticity hypothesis is that there is no effect
of set size (viz., m1 5 m2 5 . . mk), and it is indistinguishable
from the null hypothesis. Consequently, it seems that
accepting the null hypothesis is more than accepting
chance explanations (Bookstein, Frick).

There are two reservations. First, in view of the fact that
NHSTP is based on the sampling distribution that is predi-
cated by chance influences, it is inherently impossible to
decide whether the absence of the set-size effect in Schnei-
der and Shiffrin’s (1977) study is the result of automatic,
parallel detection or of chance influences. Findings of this
kind become less ambiguous, however, when the H0-like
experimental expectation is placed in a mutually exclusive
and exhaustive relationship with the expectation of a com-
peting hypothesis. For example, the expectation of the
serial controlled search model of target identification is
unlike H0. In such an event, the emphasis is on rejecting the
serial controlled search, not on accepting the H0-like auto-
maticity hypothesis. The second reason is that it should be
possible to derive an experimental expectation that is unlike
H0. The experimenter’s inability to do so indicates that the
substantive hypothesis is not as well defined as it should be.

R6. The statistical alternative hypothesis, effect
size, and statistical power

Apart from the issue of whether or not H1 is the substantive
hypothesis, there is also the question of its exact role in
NHSTP. It is not possible to talk about effect size or
statistical power if H1 has no role in NHSTP. There are also
two intertwining issues, namely, the graphical representa-
tion of effect-size or statistical power and the level of
abstraction involved.

It is customary to discuss the effect size and statistical
power in the context of the t test. Moreover, the discussion
is carried out in the context of a distribution for the control
condition and another one for the experimental condition.
These two are distributions at the level of raw scores, as
witnessed by the fact that the effect size is defined as the
difference between the experimental and control means in
units of the standard deviation of the control condition.
They are labeled the H0 and H1 distributions, respectively.
The effect size is represented by the distance between the
means of the two distributions. Although the H1 distribu-
tion is not used in making the decision about statistical
significance, it is essential in defining the effect size and
statistical power. This account of the t test will be called the
“customary account” henceforth.

What actually takes place in the t test is not what is
described in the customary account. The a level is defined
in terms of the sampling distribution of differences, not the
distribution of population scores. Nor is this sampling
distribution about, or based on, the control condition. This
is true not because psychological theories are not “strong”
or because psychologists are not “bold” when they propose
their hypotheses (Gigerenzer’s Type II “statistical reason-
ing”). Hence, any appeal to computer simulation for in-
sights about the expected effect size becomes moot (Lash-
ley). That is, even if the “strong” theory argument were not
problematic for the reasons given in section R4.3, it is still
not possible to represent the H1 distribution in a way that
reflects properly the probability basis of the t test. In other
words, “effect size” and “statistical power” cannot be de-
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fined at the level at which the statistical decision is carried
out.

In short, to accept the customary account, it is necessary
to show why the probability basis of the t test is not the
theoretical sampling distribution of differences between
two means. In the event that it is not possible for critics to
do so, they have to provide a valid reconciliation between
the customary and NHSTP accounts.

To the extent that the NHSTP account of the probabilis-
tic basis of the t test is not refuted, the questions about the
customary account raised in the NHSTP defence remain,
particularly those about the dependence of effect size and
statistical power on the H1 distribution. Lashley’s com-
mentary seems to be an attempt to reconcile the customary
and NHSTP accounts by suggesting that the power analysis
is meant to deal with a different stage in the inferential
process. The power analytic argument is about stage 1 (at
which two distributions are involved), whereas the test of
significance is an exercise in stage 2 that utilizes only one
distribution. Moreover, power analysis predicts the out-
come of NHSTP.

Lashley’s effort raises the following questions: Do the
two stages belong to the same level of abstraction? What is
the basis of the researcher’s ability to predict the lone
distribution in stage 2 from the two distributions from stage
1? How is the prediction possible when nonstatistical influ-
ences on data stability are not taken into account (e.g., the
difficulty of the experimental task, the amount of practice
available to the subjects, etc.)? What additional numerical
information is provided by the effect size that is not pro-
vided by the test statistic? How can the sample size be
determined in the mechanical way suggested in power
analysis? How is the magnitude of the effect related to the
validity of the theoretical statement about a material or
formal cause?

R7. Some issues about the effect size

Effect size is of interest because it seems to indicate the
amount of evidential support provided by the data for
the hypothesis (the “evidential status of the data”) or of the
practical importance of the data (the issue of “practical
validity”). The question of evidential status takes on a
different complexion when distinctions are made between
(1) the substantive and statistical hypotheses, and (2) the
formal (or material) and efficient causes.

Consider Sternberg’s (1969) study of short-term memory
storage. He manipulated the memory set size (viz., 1, 2, or 4
digits) and found that subjects’ correct reaction times
increased linearly with increases in the size of the memory
set. One can (and very often does) say that the manipulation
of the set size was the cause of the increase in reaction
times. Nonetheless, there is a less misleading way to de-
scribe the functional relationship between set size and
correct reaction times.

In manipulating the memory set size, Sternberg (1969)
provided the memory system with different contexts to
operate. The increase in reaction times when given larger
memory set sizes is a reflection of a property of the short-
term store (viz., its inability to handle multiple items
simultaneously). In other words, the observed functional
relationship reveals what Aristotle would call a “material
cause” or a “formal cause.” This is different from an
efficient cause (e.g., exerting force to move a stationary

object), which is what critics of NHSTP have in mind when
they talk about effect size. The material or formal cause of
interest to cognitive psychologists is not ascertained by
statistical significance or effect size (Lewandowsky &
Maybery). Instead, it is determined by the validity of the
series of embedding syllogisms. Furthermore, the effect
size gives no information that is not available in the test
statistic that is used to decide whether chance influences
can be excluded. The conclusion is that effect size, (i.e., the
magnitude of an efficient cause) is irrelevant to theory
corroboration.

Maher’s suggestion to prepare and use actuarial tables
for utilitarian research is appropriate for reasons of practi-
cal validity. The success of such an approach depends on
having some valid, well-defined, nonstatistical criteria de-
veloped independently of the effect size itself (see also
Kihlstrom). The more immediate lesson is that regardless
of the index used, the effect size on its own (or any other
statistical index) is informative of neither the practical
validity nor the evidential status of the data (Nester).

R8. Statistical power

The validity of power analysis can still be questioned
because it has not been shown why the NHSTP account is
incorrect or how the NHSTP and customary accounts may
be reconciled. For the sake of argument, assume that the
customary account had not been problematic. Power anal-
ysis is meant to be used to disambiguate the decision about
statistical significance. The ambiguity arises because statis-
tical significance depends on sample size, effect size, and a
level. The power of the test is used to determine the correct
sample size for a required effect size at the chosen a level.
The decision about statistical significance is said to be
unambiguous under such circumstances.

Suppose that the sample size stipulated in the statistical
power table is 25, given that the expected effect size is 0.85
and the power of the test is .95 with a set at .05. How can
one be sure that the result is unambiguous when it is not
known whether the 25 subjects have been given the proper
training on the task? Are they given enough trials in the
experimental session? These questions become more im-
portant, regardless of the decision about statistical decision,
when fewer than 10 well-trained subjects are typically
tested in multiple 300-trial sessions in the area of research
in question (Lewandowsky & Maybery). It is simply not
clear how the numerical index, statistical power, can confer
validity on matters that are not quantitative in nature.

R9. A recapitulation of some reservations about
the Bayesian approach

Psychologists often propose hypotheses to explain phenom-
ena (see Bookstein for an exception). The minimal crite-
rion for accepting an explanatory hypothesis is that it should
be consistent with the phenomenon to be explained. Given
the distinction between the instigating phenomenon and
the evidential data in section R4.1, it can be seen that the
data collection procedure is neither the criterion used to
assess the validity of the hypothesis nor the unexplained
phenomenon itself. Such a scenario is characterized as the
“phenomenon → hypothesis → evidential-data” sequence
in the NHSTP defence.
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Also important in the defence of the NHSTP is the fact
that, regardless of the experimenter’s theoretical biases or
preferences, the hypothesis to be corroborated is given the
benefit of the doubt when experimenter derives the re-
search and experimental hypothesis, designs the experi-
ment, and tabulates the data. That is, what the data indicate
is not affected by what the experimenter thinks (or feels)
about the hypothesis before the experiment. This is en-
sured partly by stipulating the size of the data set (viz., the
number of subjects, the number of trials per session, the
number of sessions, etc.). Nor is the data collection proce-
dure adjusted as a result of periodic examinations of the
data accumulated. This account of psychological research is
different from the scenario Bayes had in mind.

Bayes’s concern was with a situation in which the hypoth-
esis was about the outcome of the data collection itself. The
size of the data set was ill defined. There was nothing to
explain, and there was no criterion for assessing whether
the subjective degree of belief in the outcome of data
collection exercise is correct. Would a data analysis proce-
dure based on such a scenario applicable to the “phenome-
non → hypothesis → evidential-data” sequence? Given the
Bayesian overtone of Rozeboom’s (1960) alternative, this
issue also applies to Zumbo’s suggestion.

The derivation of the posterior probability from the prior
probability in the context of new data is not questioned in
the NHSTP defence at the mathematical level. Instead, the
issue raised concerns whether the Bayesian theorem is
appropriate for analyzing data about the validity of the
“phenomenon → hypothesis → evidential data” sequence.
How can this nonmathematical issue be dealt with in the
new Bayesian developments? The more serious consider-
ation is an implication of the Bayesian theorem about data
interpretation.

It was Bayes’s practice to obtain the posterior probability
by adjusting the prior probability. The extent to which the
data change the prior degree of belief in the hypothesis
depends on the prior belief itself. The data have less weight
the higher the prior degree of belief, a point not taken into
account by Snow. In non-Bayesian terms, this practice
amounts to saying that the theoretical importance of the
data depends on the researcher’s degree of belief in the
hypothesis before the experiment. This is antithetical to
objectivity, and it is shown in the NHSTP defence why
there is no reason to do so.

This objection would not apply to new Bayesian ap-
proaches if they no longer used the Bayesian theorem for
such a purpose. Rouanet seems to suggest another possi-
bility. The Bayesian exercise is still the derivation of the
posterior probability from the prior probability. However, a
“noninformative” Bayesian would assume a “state of igno-
rance” about parameters when choosing the “prior distribu-
tion.” The posterior distribution then expresses the evi-
dence provided by the data, presumably not contaminated
by any nonzero prior probability.

There is a close relationship between the experimental
design and the test of significance. For example, the t test
and anova are used for experiments that use the one-
factor, two-level and the one-factor, multilevel design (or
factorial designs), respectively. Are these issues important
in the “noninformative” Bayesian approach? How are the
various aforementioned meta-theoretical and methodologi-
cal considerations met in the “noninformative” Bayesian
approach?

R10. Further ado with meta-analysis –
psychometric meta-analysis

Snow may be referring to Glass et al.’s (1981) meta-analytic
approach when he suggests that specific information about
the associated probability, p, may be useful. The issue of
incommensurability was one of the difficulties of Glass et
al.’s (1981) approach. Even though a group of studies is all
about the same phenomenon, it is inappropriate to com-
bine them in meta-analysis for an overall test of significance
because it is inappropriate to mix apples and oranges.

Representing the psychometric meta-analytic orienta-
tion (Hunter & Schmidt 1990; Schmidt 1996), Hunter
points out that studies dealing with the same independent
and dependent variables enter into the meta-analysis only
to obtain a better estimate for the parameter, not to do a test
of significance. This does not overcome the “mixing apples
and oranges” difficulty. For example, set size was the
independent variable and correct reaction time was the
dependent variable in both Schneider and Shiffrin’s (1977)
and Sternberg’s (1969) studies. Be that as it may, it is not
meaningful to include them in the same meta-analysis as
Hunter recommends, because there are other important
differences between the two studies.

Researchers are advised by psychometric meta-analysts
not to draw conclusions about substantive issues on the
basis of data from single studies, because the psychometric
meta-analysis is more accurate and less ambiguous than
individual tests of significance. An examination of the
justification offered for this assertion is instructive. With
1,455 participants from 15 geographic sites, Schmidt et al.
(1985) found a correlation coefficient of .22 between the
performance on the test being validated and the ability to
operate a special keyboard. The correlation coefficient was
statistically significant. They then formed 21 random sam-
ples (without replacement) of 68 members each from the
1,455 participants. Each of these 68-member samples was
treated as a ministudy. The correlation between task perfor-
mance and keyboard operation was obtained for each of the
21 “ministudies.” Statistical significance was found in only 8
of the 21 ministudies. The means of the 8 ministudies was
.33, which differed from the “true” correlation coefficient
of .22. This is the reason psychometric meta-analysts find
individual tests of significance misleading. They also con-
clude that the meta-analytic result is more accurate.

Four things to note before accepting the argument for
meta-analysis: First, the effective size of the population
shrank as the number of ministudies increased because the
samples were selected without replacement. This feature
renders the independence among the ministudies suspect.
The second point is that Schmidt et al. (1985) should have
used cluster sampling, not simple random sampling, to
form their ministudies in order to reflect the local charac-
teristics of the 15 sites. That is, samples in their ministudies
were not representative. Third, their “true” parameter (r 5
.22) was not theoretically informed. It was the measure-
ment obtained from a complete enumeration of all the
participants, and they assumed that a complete enumera-
tion necessarily gives an accurate result. There is no clear
reason why this should be the case; the opposite is more
likely to be true. Given the same extent of the resources for
conducting the research, the chance of making mistakes is
higher if there are more units or participants to be mea-
sured (see Slonium 1960). Fourth, LeLorier et al. (1997)
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have reported that “the outcome of the 12 large ran-
domized, controlled trials . . . were not predicted accu-
rately 35 percent of the time by the meta-analyses pub-
lished previously on the same topics” (p. 536).

Is meta-analysis a valid means of corroborating explana-
tory hypotheses (Rossi)? Hunter makes it clear that psy-
chometric meta-analysts are not interested in explanatory
hypotheses. Chow (1987c) has shown that Glass et al.’s
(1981) approach was invalid as a theory-corroboration pro-
cedure. The objection to using meta-analysis is not that it
may been misused (Glück & Vitouch), but that some of its
underlying meta-theoretical assumptions are debatable.
The difficulty with resolving the discrepancies in studies of
spontaneous recovery may partly be due to the fact that
there is insufficient theoretical insight (Rossi). Alter-
natively, why should there be theoretical unanimity when
the phenomenon may have multiple underlying material or
formal causes?

R11. Summary and conclusions

The NHSTP defence is an attempt to rationalize the role of
tests of significance in the theory-corroboration experi-
ment. This approach was adopted because it has been
acknowledged that the criticisms of NHSTP were not
applicable to experimental studies in which all recognizable
controls are properly instituted. There is no reason to
believe that using NHSTP hinders theory development.
There are difficulties with the characterization of the
“strong hypothesis.” The effect size has no evidential status.
The more serious reservation about the effect size and
statistical power is based on the fact that they are defined at
a level of abstraction different from the level at which the
decision about statistical significance is made. Without
disputing the mathematics in the Bayesian or meta-analytic
approaches, their role in theory corroboration may be
questioned on methodological or conceptual grounds. In
sum, there is as yet no reason to revise the NHSTP defence
in any substantive way.
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MIT Press. [HJS]

(1990) Constructing the subject: Historical origins of psychological research.
Cambridge University Press. [aSLC, GG, HJS]

Dar, R. (1987) Another look at the Meehl, Lakatos, and the scientific practices of
psychologists. American Psychologist 42:145–51. [RD]

De Finetti, B. (1974) Theory of probability. Wiley. [RAMG]
De Groot, A. D. (1990) Unifying psychology: A European view. New Ideas in

Psychology 3:309–20. [KJV]
DeGroot, M. H. (1970) Optimal statistical decisions. McGraw-Hill. [NGW]
Draper, D., Hodges, J. S., Mallows, C. L. & Pregibon, D. (1993) Exchangeability

and data analysis. Journal of the Royal Statistical Society A 156:9–
37. [JRV]

Earman, J. (1992) Bayes or bust? A critical examination of Bayesian
confirmation theory. The MIT Press. [aSLC]

Ebbinghaus, H. (1885/1964) Memory: A contribution to experimental psychology.
Dover. [KJV]

Edgington, E. S. (1966) Statistical inference and nonrandom samples.
Psychological Bulletin 66:485–87. [AFH, JRV]

(1995) Randomization tests (3rd edition). Dekker. [AFH, JRV]
Edwards, A. W. F. (1972) Likelihood. Cambridge University Press. [BDZ]
Erwin, E. (1996) A final acounting: Philosophical and empirical issues in

Freudian psychology. MIT Press. [EE]
(1997) Philosophy and psychotherapy: Razing the troubles of the brain.

Sage. [EE]
Estes, W. K. (1997) Significance testing in psychological research: Some

persisting issues. Psychological Science 8:18–20. [JFK]
Eysenck, H. J. (1975) Who needs a random sample? Bulletin of the British

Psychological Society 28:195–98. [JRV]
(1978) An exercise in mega-silliness. American Psychologist 33:517. [aSLC]

Falk, R. & Greenbaum, C. W. (1995) Significance tests die hard: The amazing
persistence of a probabilistic misconception. Theory and Psychology 5:75–
98. [aSLC, HJS]

Ferguson, T. (1967) Mathematical statistics: A decision theoretic approach.
Academic Press. [NGW]

Feynman, R. P. (1985) “Surely you’re joking, Mr. Feynman!”: Adventures of a
curious character. Bantam. [KJV]

Fillmore, C. J. (1968) The case for case. In: Universals in linguistic theory, ed.
E. Bach & R. T. Harms. Holt, Rinehart, and Winston. [aSLC]

Fisher, R. A. (1925, 1963) Statistical methods for research workers.
Hafner. [HEK] 

(1935a) The design and analysis of experiments. Oliver and Boyd. [GG, JFK,
JRV]

(1935b) The fiducial argument in statistical inference. Annals of Eugenics
6:391–98. [JP]

(1955) Statistical methods and scientific induction. Journal of the Royal
Statistical Society (B) 17:69–77. [GG]

(1956/1990) Statistical methods and scientific inference. Oliver and Boyd. (3rd
edition 1973 reprinted, Oxford University Press, 1990). [GG, HEK, JP]

(1959/1973) Statistical methods and scientific inference (2nd edition). Hafner
Publishing Co. [aSLC, NGW]

(1962) Some examples of Bayes’s method of the experimental determination of
probabilities a priori. Journal of the Royal Statistical Society B 24:118–
24. [JP]

Folger, R. (1989) Significance tests and the duplicity of binary decisions.
Psychological Bulletin 106:155–60. [rSLC, JG]

Frick, R. W. (1995) Accepting the null hypothesis. Memory and Cognition
23:132–38. [RWF, LEK]

(1996) The appropriate use of null hypothesis testing. Psychological Methods
1:379–90. [RWF, JRV]

(in press a) A better stopping rule of conventional statistical tests. Behavior
Research Methods, Instruments, and Computers. [RWF]

(in press b) Interpreting statistical testing: Processes, not populations and
random sampling. Behavior Research Methods, Instruments, and
Computers. [RWF]

Gallo, P. S., Jr. (1978) Meta-analysis – A mixed meta-phor? American
Psychologist 33:515–17. [aSLC]

Garner, W. R., Hake, H. W. & Eriksen, C. W. (1956) Operationalism and the
concept of perception. Psychological Review 63:149–59. [aSLC]

Gergen, K. J. (1991) Emerging challenges for theory and psychology. Theory and
Psychology 1:13–35. [aSLC]

Gibson, J. J. (1967/1982) James J. Gibson: Autobiography. In: Reasons for
realism: Selected essays of James J. Gibson, ed. E. Reed & R. Jones.
Erlbaum. [KJV]

Gigerenzer, G. (1987) Probabilistic thinking and the fight against subjectivity. In:
The probabilistic revolution, Vol.2. Ideas in the sciences, ed. L. Krüger,
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