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Abstract

The concept of attention is central to theorizing in learning as well as in working memory.

However, research to date has yet to establish how attention as construed in one domain

maps onto the other. We investigate two manifestations of attention in category- and

cue-learning to examine whether they might provide common ground between learning

and working memory. Experiment 1 examined blocking and highlighting effects in an

associative learning paradigm, which are widely thought to be attentionally mediated. No

relationship between attentional performance indicators and working memory capacity

(WMC) was observed, despite the fact that WMC was strongly associated with overall

learning performance. Experiment 2 used a knowledge restructuring paradigm, which is

known to require recoordination of partial category knowledge using representational

attention. We found that the extent to which people successfully recoordinated their

knowledge was related to WMC. The results illustrate a link between WMC and

representational—but not dimensional—attention in category learning.
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Attention and Working Memory Capacity: Insights from

Blocking, Highlighting, and Knowledge Restructuring

Performance in many aspects of day to day life would be extremely difficult without

the ability to hold multiple objects in mind at once. For example, reading a novel involves

semantic processing of individual words in addition to the ability to relate those words to

other aspects of the text such as plot and character development. The active and selective

maintenance of different cognitive objects is the domain of working memory. Accordingly,

the construct of working memory has considerable scope and serves a number of functions

concerning the selection, maintenance, and manipulation of goal-relevant information

(Oberauer, Süß, Schulze, Wilhelm, & Wittman, 2000; Oberauer, Süß, Wilhelm, &

Wittman, 2003).

Much theorizing has linked people’s working memory capacity (WMC) to the notion

of attention. For example, some theorists have interpreted WMC as the number of

cognitive objects that can either be simultaneously apprehended in the so-called “focus”

of attention (e.g., Cowan, 2001, 2005), or immediately entered into the focus of attention

(Oberauer, 2009). Other theorists have emphasized the supervisory function of the

working memory system, identifying WMC with control over executive attention (e.g.,

Engle, 2002; Engle & Kane, 2004; Engle, Tuholski, Laughlin, & Conway, 1999; Kane,

Bleckley, Conway, & Engle, 2001; Kane, Conway, Hambrick, & Engle, 2007), which

expresses itself in the ability to simultaneously maintain relevant task information, while

also suppressing irrelevant information. In support, WMC has been found to be

associated with resistance to interference in attentional-control situations without any

memory involvement: Kane et al. (2001) showed that in a simple “antisaccade” task, in

which a cue flashed on one side of the screen requires an orienting response to the opposite

side, WMC was a predictor of performance. Similarly Kane and Engle (2003) showed that
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WMC mediated performance on the classic Stroop task (i.e., naming the color ink of an

incongruent word; e.g., “BLUE” presented in red ink).

The close theoretical relationship between attention and WMC invites the question

of how WMC relates to other cognitive domains that ascribe a key role to attention.

Under an executive-attention view, WMC might be expected to correlate with

performance in learning tasks that involve deployment of selective attention. This article

thus explores the relationship between WMC and two distinct manifestations of attention

in category and associative learning; namely, dimensional attention on the one hand and

representational attention on the other.

Attention and Category Learning

The idea that attention plays a role in category learning has a long theoretical

history. Indeed, attention is a staple construct in contemporary models of categorization

(see Kruschke, 2008, for a recent review). In categorization, attention is most often

thought of in terms of a weighting of inputs to some stage of processing. The notion that

stimulus information is selectively weighted has roots in classical views on attention (e.g.,

Kahneman, 1973; Neisser, 1967; Treisman, 1969) and remains at the core of modern

theories of attention (e.g., Logan, 2002, 2004). To illustrate, a schematic overview of the

stages of processing involved in categorization is shown in Figure 1. The figure shows a

number of different processing stages and identifies two points at which attentional

mechanisms have been thought to operate. Perceptual processes provide raw input that is

subsequently weighted by dimensional attention, such that information along attended

dimensions is accentuated, whereas information along unattended dimensions is

attenuated (Nosofsky, 1986). Traditionally, only a single type of category representation is

assumed to be available, in which case that representation is activated by the

dimensionally weighted stimulus input, usually on the basis of similarity.
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More recent models have investigated the possibility that multiple types of category

representations might be available—for example, people may have access to a rule

representation in addition to an exemplar-based representation to handle exceptions to

the rule (e.g., Erickson & Kruschke, 1998). When multiple category representations are

available, representational attention determines which one is selected, after which the

selected category representation is activated by the dimensionally weighted stimulus

input.1 Activation of the category representation then drives a decision mechanism,

resulting in an overt category response.

The attention-categorization link was first proposed by Shepard, Hovland, and

Jenkins (1961), who examined the rates at which people learned to categorize stimuli

defined along three binary-valued dimensions (e.g., large/small, red/green,

triangle/square). Shepard et al. (1961) found that the rates at which people learned the 6

basic “problem types” that can be created from three binary dimensions corresponded to

the number of relevant stimulus dimensions involved: The Type I problem (one relevant

dimension) was learned the fastest, followed by Type II (two relevant dimensions),

followed by the rest (three relevant dimensions). Moreover, learning rates were faster than

could be predicted on the basis of stimulus generalization alone, with the discrepancy

between theory and data being largest for the simpler problems (viz. Types I and II).

Shepard et al. (1961) conjectured that selective attention to relevant stimulus dimensions

might account for the discrepancy. Nosofsky (1984) provided theoretical support for this

notion, showing that an extended version of Medin and Schaffer’s (1978) context model

with differentially-weighted stimulus dimensions produced a far better approximation to

the data (see also Kruschke, 1992; Love, Medin, & Gureckis, 2004). The need for selective

dimensional attention to quantitatively account for the data of Shepard et al. (1961) has

been repeatedly underscored by replications of the classic study (Lewandowsky, 2011;

Nosofsky, Palmeri, & McKinley, 1994). In all instances, models that did not incorporate
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some form of selective dimensional attention fit the data less well than models that did

include selective attention (viz. ALCOVE; Kruschke, 1992). Moreover, the

theoretically-expected allocation of attention across stimulus dimensions in the Shepard

problems has recently been demonstrated more directly using eye-tracking analysis

(Rehder & Hoffman, 2005a). There is now little dispute about the role of selective

dimensional attention in category learning.

Dimensional attention can be readily linked to the executive-attention view of

working memory: A crucial property of executive attention is the ability to suppress

irrelevant information, preventing it from intruding into working memory (Engle & Kane,

2004; Kane et al., 2001, 2007). If dimensional attention operates analogously, it follows

that it should come at a cost: Whereas learning about attended dimensions will be

enhanced, unattended dimensions should be actively ignored, and the effects of that

inattention should persist even when the task no longer demands it. This prediction has

been confirmed by studies using dimensional relevance shifts (Kruschke, 1996b). In these

tasks, an initially-learned category structure is replaced with a new stimulus-response

mapping later in learning. The stimulus dimensions that are relevant to the second

structure may or may not overlap with those relevant to the first structure. Whereas

people can learn the new structure quite quickly if it involves the same diagnostic

dimensions, people are quite slow to learn the second structure when previously irrelevant

dimensions are suddenly made relevant to the task. More recently, Hoffman and Rehder

(2010) have produced eye-tracking data confirming the attentional locus of the effect of

relevance shifts on subsequent learning: People fixate less frequently on a previously

irrelevant stimulus dimension even if it is suddenly made relevant to the altered category

structure.

The apparent conceptual and empirical similarities between dimensional and

executive attention suggest that WMC may be associated with attentional aspects of
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category learning. However, the limited available evidence has been negative. In a recent

replication of the Shepard et al. (1961) study, Lewandowsky (2011) examined the

dimensional attention-WMC link using structural equation modeling (SEM). The

behavioral data were very clear: The classic ordering of the six problem types was

reproduced, and at the level of individual participants, a model with a mechanism for

selective attention (ALCOVE) fit the data better than a model without (the configural

cue model; Gluck & Bower, 1988). SEM was then used to examine whether individual

variation in performance could be captured by any of ALCOVE’s parameters. A single

latent variable was sufficient to account for the variation of parameters across all 6

problem types. Interestingly, the single parameter that loaded onto this latent variable

(with estimates for each of the problem types constituting a separate manifest variable)

reflected the rates at which direct stimulus-response associations were learned by the

model. ALCOVE’s attention learning parameter, by contrast, played virtually no role in

explaining individual differences, despite the fact that the observed speed of learning

across all problems was strongly related to WMC. This result runs counter to the

expectation of a straightforward relationship between attention in category learning and

WMC. Why did learning of dimensional attention fail to correlate with WMC?

We consider two possibilities in this paper. First, it could be the case that the

Shepard problems are simply not sensitive enough to detect variation in people’s ability to

allocate dimensional attention: Only the Type I and II problems require deployment of

selective dimensional attention; the remaining four problems require attention to all three

stimulus dimensions. Given that people typically begin learning the Shepard problems in

a diffuse attentional state (Rehder & Hoffman, 2005a), it follows that the dimensional

attention learning demands across the suite of problems may have been minimal, thus

obscuring any genuine relationship with WMC. On this account, a task that yields large

and behaviorally unambiguous dimensional attention effects may fare better at revealing
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the link between dimensional attention and WMC. To this end, our first study used two

association learning tasks that are widely thought to involve attentional learning; namely,

blocking and highlighting (e.g., Kamin, 1968; Kruschke, 2009).2 Second, it could be that

the Shepard problems, and others commonly examined in the context of dimensional

attention (e.g., the so-called 5-4 problem introduced by Medin & Schaffer, 1978, and

discussed in detail by Rehder & Hoffman, 2005b, and Smith & Minda, 2000) do not

sufficiently engage executive attention and thus WMC. Although dimensional attention

seems to share many features with executive attention, there is an alternative account on

which the two may actually be unrelated. Whereas dimensional attention operates over

features of the stimulus, executive attention is usually construed as operating over abstract

cognitive representations such as task goals (Engle & Kane, 2004; Kane et al., 2007). By

implication, if controlling access to cognitive representations is central to executive

attention as conceived by WM theoreticians, it is not dimensional, but representational

attention in categorization that might be expected to relate closely to WMC. For example,

Erickson (2008) aligned executive attention with the gating mechanism of the ATRIUM

model of category learning (Erickson & Kruschke, 1998). In ATRIUM, representational

attention is controlled by a gating mechanism, which determines whether a rule-based or

exemplar-based category representation drives responding on a given trial. We discuss the

implications of this view in detail when we introduce Experiment 2. For now, we suggest

that executive attention may not contribute to the learning of a single distribution of

dimensional attention, but may come into play when coordination of multiple subsets of

knowledge, which map onto different category representations, is required. Because

performance on the Shepard problems is readily explained in terms of distributions of

dimensional attention over a single category representation, it follows that those problems

may not have tapped executive attention. To examine this possibility, our second study
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used a knowledge restructuring task that required repeated changes in the way multiple

category representations were coordinated during the task.

To foreshadow our principal results, we adduce support for the second alternative.

That is, we fail to find any relationship between WMC and dimensional attention, as

assessed by the magnitudes of blocking and highlighting effects. However, we uncover a

significant relationship between WMC and the ability to change the way different category

representations are coordinated during a task.

Attention and Associative Learning: Blocking and

Highlighting

Since the discovery of associative blocking by Kamin (1968, 1969), there has been

mounting evidence that attention plays a central role in associative learning and many

contemporary models now include mechanisms for selective attention (Kalish, 2001; Kalish

& Kruschke, 2000; Kruschke, 1996a, 2001b; Le Pelley, 2004; Mackintosh, 1975). In a

typical blocking paradigm (summarized in Table 1), participants initially learn to

associate some cue, A, with some outcome, X. Throughout this article, associative

relationships are written using the notation, Cue → Outcome; hence A → X in Table 1.

To ensure that A and X are distinguished from other cues and outcomes, F → Y trials are

interleaved among the A → X trials during early learning. After these initial associations

are learned, a new learning phase begins that involves two novel cue compounds presented

with equal frequency, A.B → X, and C.D → Y. In the late training phase, A still predicts

outcome X, as it did in the early learning phase; the only difference is that A has been

paired with a redundant cue, B. Note also that cues B, C, and D have all been paired with

their respective outcomes with equal frequency. If simple co-occurrence determines

associative learning, it follows that the B → X association should be as strong as those

between C → Y and D → Y. This prediction is assessed on final test trials that present
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the ambiguous compounds B.C → ? and B.D → ?, requiring participants to predict an

unknown outcome. A very robust finding (e.g., Kruschke & Blair, 2000; Kruschke,

Kappenman, & Hetrick, 2005; Le Pelley, Beesley, & Suret, 2007; Shanks, 1985) is that

people strongly prefer outcome Y over outcome X; the implication is that the associations

between C and Y and D and Y are stronger than the association between B and X.

Taken at face value, the blocking effect appears to show that very little has been

learned about cue B. However, a dimensional attention account holds that people do learn

something about cue B—they learn to ignore it. Although blocking per se does not

necessitate an explanation based on attention—the principle of error-driven learning, as

formulated in the classic model of Rescorla and Wagner (1972), suffices to produce

blocking—the further consequences of blocking do.

To test the dimensional attention account of blocking, Kruschke and Blair (2000)

elicited robust blocking effects using the procedure just described. In a subsequent third

training phase, the blocked cue (B) was associated with a novel to-be-learned outcome

(e.g., Z). If blocking were due to learned inattention, subsequent learning about a blocked

cue should proceed at a slower rate compared to a control cue. By contrast, a purely

error-driven account predicts equivalent learning rates due to the error signal introduced

by the novel outcome. Kruschke and Blair’s (2000) results were consistent with the

dimensional attention account; the result has since been replicated several times

(Kruschke, 2005b; Le Pelley et al., 2007). Further direct empirical support for the

dimensional attention account of blocking was also adduced by Kruschke et al. (2005) who

showed that gaze duration to blocked cues was reduced relative to non-blocked cues (see

also Beesley & Le Pelley, 2011). These results clearly show that learned inattention is a

major driving factor behind blocking, thus providing conceptual linkage with the executive

attention said to underlie suppression of irrelevant information in working memory.
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Another effect in associative learning, closely related to blocking, is attentional

highlighting (Kruschke, 1996a, 2003, 2005b, 2009; Kruschke et al., 2005; see also, Gluck &

Bower, 1988; Johansen, Fouquet, & Shanks, 2010; Kalish, 2001; Kalish & Kruschke, 2000;

Medin & Edelson, 1988). Whereas in blocking, dimensional attention is directed away

from a novel cue, highlighting involves directing dimensional attention toward a novel cue.

In a typical highlighting design (also summarized in Table 1), participants are trained on

a single association involving two cues and an outcome, I.pE → E, in an early training

phase. In a later training phase, a new association is introduced, I.pL → L. Note that the

associations are symmetrical in that each outcome is associated with a single perfect

predictor, cues pE and pL, and shares a common imperfect predictor, I. If people learn the

symmetry and exhibit statistically normative behavior, cues pE and pL should be equally

predictive of outcomes E and L, respectively, whereas cue I should be regarded as

non-predictive. In a subsequent test phase, people are presented with two critical stimuli,

I → ?, and the ambiguous compound, pE.pL → ?. Interestingly, people show strong and

conflicting choice outcome preferences for these stimuli. For I → ?, people exhibit a strong

preference for outcome E. Conversely, for pE.pL → ?, people prefer outcome L. The effect

illustrates a marked asymmetry in people’s learning: Cue I is more strongly associated

with outcome E, whereas the association between pL and L is stronger than the

association between pE and E. A normatively irrelevant predictor (I) is deemed relevant,

whereas one perfect predictor (pL) is apparently judged “more perfect” than another one

(pE).3

Kruschke (2009) provided an attentionally-mediated order of learning account of

highlighting, which postulates that highlighting occurs because both cues I and pE form

associations with outcome E in the early learning phase. When the cue compound I.pL is

introduced in later training, the pre-existing association between I and the erroneous

outcome E introduces prediction error. The fastest way to eliminate this error is to shift
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dimensional attention away from cue I and onto pL whenever the compound I.pL is

presented. The rapid attention shift serves to protect previous learning about the

association between cue I and outcome E while accelerating learning about the

relationship between pL and L.

The consequences of attentional highlighting can be assayed in the same way as for

blocking. Kruschke (2005b) showed that subsequent learning about a previously

highlighted cue was easier (i.e., more accurate) than a non-highlighted control cue (cf.

Kruschke, 1996b; Kruschke & Blair, 2000). Kruschke et al. (2005) confirmed the

attentional locus of the highlighting effect, showing increased gaze duration to highlighted

cues relative to non-highlighted cues.

In sum, there is much evidence to suggest that both blocking and highlighting are

bona fide attentional effects in associative learning. We examine the relationship between

blocking, highlighting, and WMC in Experiment 1.

Experiment 1: Blocking & Highlighting

A relationship between WMC and blocking and highlighting effects would be

consistent with the idea that WMC and blocking and/or highlighting engage a common

form of attention. Failure to find any relationship would imply that blocking and

highlighting do not rely on the same form of attention that is implicated in WMC.

Method

The experiment was spread over three 1-hour sessions scheduled at participants’

convenience. Participants completed both the blocking and highlighting tasks in a single

experimental session. The order of the blocking and highlighting tasks was determined by

random allocation to one of 8 “modular sequences” described in detail later. The other

two experimental sessions involved an unrelated categorization experiment. WMC was
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measured using the battery of 4 tasks presented by Lewandowsky, Oberauer, Yang, and

Ecker (2010). WMC tasks were spread across the three sessions. All experiments were

controlled by a Matlab program designed using the Psychophysics Toolbox (Brainard,

1997; Pelli, 1997).

Participants

A total of 140 people from The University of Western Australia community

participated in the 3-session experiment either in exchange for course credit or

remuneration at a rate of A$10 per hour. The sample was sufficiently large to allow

structural equation modeling.

Modular Sequences

Following Lewandowsky (2011), we sought to strike a balance between maximizing

experimental control via counterbalancing on the one hand, and reducing “method”

variance on the other. We created 8 unique “modular sequences” to which participants

were randomly assigned. Participants within a given modular sequence received the same

stimulus sequence; that is, stimulus presentation order, and the mapping between stimulus

features and abstract experimental design for the blocking and highlighting tasks were

fixed across participants within a given modular sequence. Participants in different

modular sequences encountered different training sequences and different stimulus feature

mappings. The order in which participants completed the blocking and highlighting tasks

was counterbalanced across modular sequences such that each task was first in four of the

eight sequences.

Working Memory Capacity

Because working memory is a multifaceted construct (Oberauer et al., 2000, 2003),

it is almost certain that a measurement based on a single task will overlook important



Attention and Working Memory Capacity 14

aspects of the construct of interest. For example, Lewandowsky et al. (2010) analyzed a

number of tasks intended to measure WMC and found variation in performance on these

tasks to be a composite of variation due to a general WMC factor plus variation due to

task-specific factors. To avoid the pitfalls of contaminating WMC measurement with

task-specific variance, we used a heterogeneous WMC test battery in both experiments

(Lewandowsky et al., 2010).

The four tasks in this battery addressed two content domains of WMC

(verbal/numerical vs. spatial) in addition to two functional aspects of WMC (information

storage in the context of online processing and integration of relational information). The

tasks included operation span (OS; Turner & Engle, 1989), sentence span (SS; Daneman

& Carpenter, 1980), spatial short term memory (SSTM; Oberauer, 1993), and memory

updating (MU; Oberauer et al., 2000; Salthouse, Babcock, & Shaw, 1991).

Performance on the various working memory tasks have been found to load onto a

single latent variable, thus providing a robust and reliable estimate of WMC. These tasks

are described in detail in Lewandowsky et al. (2010) and we therefore do not restate those

details here.

Blocking and Highlighting Tasks

The blocking and highlighting tasks were based on those used by Kruschke et al.

(2005). In all cases, two copies of the abstract designs detailed in Table 1 were

implemented in the experiment. For example, where A→X appears in Table 1, two

versions, A1→X1 and A2→X2 were implemented in the actual experiment (see Tables 2

and 3 for details). Both tasks required determining the identities of “agents” sending a

number of “coded messages”. The coded messages were constructed from a set of stimulus

words that were randomly sampled from the same pool of 20 candidate words used by

Kruschke et al. (2005). Candidate words were 5-letter nouns with familiarity, imagability,
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and concreteness ratings above 500, as recorded in the MRC Psycholinguistics Database

(http://www.psy.uwa.edu.au/mrcdatabase/uwa mrc.htm). Each modular sequence

involved a different random sample of stimulus words. Within each modular sequence,

there was no overlap between the set of stimulus words used for the blocking task, and the

stimulus set for the highlighting task. The mapping between implemented and abstract

response alternatives (i.e., the “senders” of the coded messages) was invariant across

subjects, but differed between blocking and highlighting tasks.

Procedure

Participants completed all tasks in a sound-attenuated testing booth. The basic

trial structure for the blocking and highlighting tasks was very similar. An example

blocking trial is presented schematically in Figure 2. Participants indicated their response

via mouse click in one of the response boxes below the fixation point. During training,

corrective feedback was provided directly following a response in the location previously

occupied by the response prompt: ‘CORRECT! The message was sent by . . . ’ or

‘WRONG! The message was sent by . . . ’. For test stimuli, which were never paired with

any outcome, the message ‘Response recorded’ was presented instead. Feedback remained

visible until participants terminated the trial by clicking a button labeled “Next” that

appeared in the center of the response alternatives. Appearance of the feedback and the

“Next” button was separated by a mandatory 1 second study period. A 500 ms blank

interval separated trials.

The training regime for the blocking task involved an early phase followed by a late

phase. Each phase involved 80 training trials, divided into 10 8-trial blocks. Each training

block comprised a random permutation of the relevant subset of stimuli detailed in Table

2. The training phases were followed by a test period that involved all of the stimuli

included during the late training phase (which were presented twice each) in addition to a
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set of previously unencountered test stimuli (presented once each). Test stimuli were

presented in a random order determined by the particular modular sequence. Performance

on the training stimuli presented during the test phase was used to assess extent of

learning. The test stimuli were divided into two classes. B.(C/D) stimuli paired the

blocked cue B with one of the control cues, C or D. Responses to these stimuli indicate

whether the C→Y and D→Y associations are stronger than the B→X associations, and

thus test directly for blocking. By contrast, A.(C/D) stimuli pair the blocking cue A with

the control cues. Responses to these items reflect the strength of the A→X association

relative to the C→Y and D→Y associations.

The training regime for the highlighting task followed the canonical design proposed

by Kruschke (2009), which equates base rates for all training stimuli, and involved three

training phases (see Table 3 for details). In total there were 168 training trials (excluding

the training stimuli interleaved among test stimuli, which were used to assess learning of

the training set). As with the blocking task, the order of trials was randomly permuted

within each block. Test stimuli were ordered by randomly permuting the entire stimulus

set. The two classes of test stimuli were designed to assess the association strengths

between the I, pE, and pL cues and their trained outcomes. I. test stimuli involved I cues

presented in isolation to determine whether they were differentially associated with

outcome E. The pE.pL test stimuli paired the two perfect predictors of outcomes E and L

to determine whether the pL→L association dominated the pE→E association by virtue of

attentional highlighting of the pL cue.

Results

Data Screening

To be included in the final analysis, a participant needed to have (1) completed all

WMC tests, (2) performed better than 70% on the processing components of the two
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complex span tasks (OS and SS), and (3) performed significantly better than chance on

the training stimuli that were interleaved with test items in both the blocking and

highlighting tasks. For the blocking task, the chance cutoff was 8 correct responses out of

the 16 relevant trials (given p = .25 and binomial assumptions). For the highlighting task,

correct responses on at least 6 of the 8 training trials were needed to exceed chance. Only

three participants failed to meet the performance criteria on either the blocking or

highlighting tasks. An additional 16 participants were removed from the analysis because

of either failing to complete all test sessions (9 participants), or performing worse than

70% on at least one of the processing components in the span tasks. In total, data from

121 participants remained for analysis.

Working Memory Battery

WM performance was scored using a partial-credit scheme (cf. Conway et al., 2005).

For instance, a participant who correctly remembered 5 out of 6 letters in a complex-span

trial would score 5/6 on that trial, with the person’s total score representing the mean of

these partial scores across trials. Descriptive statistics for the WMC battery are shown in

Table 4; they are consonant with those obtained during previous applications of the

battery (Craig & Lewandowsky, in press; Ecker, Lewandowsky, Oberauer, & Chee, 2010;

Lewandowsky, 2011; Lewandowsky et al., 2010; Lewandowsky, Yang, Newell, & Kalish,

under review).

Blocking and Highlighting Effects

Our analysis of the blocking and highlighting data follows that of Kruschke et al.

(2005). Overall accuracy on the 16 training stimuli presented at test was at ceiling,

M = .97, indicating robust learning of the training set. There was no obvious difference in

learning between the A.B and C.D training stimuli, both Ms= .97.
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We next examined choice preferences for the two classes of test stimuli. For the

B.(C/D) class stimuli, which paired the blocked cue B with control cues C and D,

participants chose the response option associated with the control cue (Response Y) 59%

of the time. The response associated with the blocked cue (Response X) was chosen only

35% of the time. The remaining 6% of responses were distributed across the other two

response options. We counted the number of times each participant gave the relevant Y

response minus the number of times that participant gave the relevant X response, divided

by the number of B.(C/D) trials (i.e., 16). This yielded an index of choice preference for

the B.(C/D) class of stimuli, which we denote DmBc, for D minus B for choice. The mean

DmBc value was 24%, which was significantly greater than 0,

t(120) = 7.24, p < .001, r2 = .30, indicating a robust blocking effect.

To confirm that the effect could not be attributed to a bias to choose the control

response when faced with conflicting cues, we examined choice preferences for Class

A.(C/D) test items, which paired cue A with the two control cues. Responding reflected a

differential preference for the outcome associated with cue A (Response X), which was

selected 68% of the time. The response associated with the relevant control cue (Response

Y) was selected on only 30% of trials. The remaining 2% of responses were distributed

across the other two response options. We computed analogous component measures of

choice preference by counting, for each participant, the number of X responses minus the

number of Y responses, divided by the number of A.(C/D) trials (i.e., 16). This choice

preference index for A.(C/D) stimuli is denoted AmCc, for A minus C for choice. The

mean AmCc was 37%, which was significantly greater than 0,

t(120) = 11.42, p < .001, r2 = .52, indicating that the blocking effect was not due to a

general preference for the control outcome.

We analyzed the highlighting data in a similar manner. To confirm that the training

set was learned, we examined response accuracy to the I.pE and I.pL training stimuli



Attention and Working Memory Capacity 19

presented during the test phase. Overall accuracy on these 8 training stimuli was at

ceiling, M = .95. Comparably high levels of learning were achieved for the I.pE and I.pL

training stimuli, Ms = .97 and .94, respectively.

We next examined choice preferences for the two classes of test stimuli. For the

pE.pL test stimuli, which paired the perfect predictors for outcomes E and L, participants

chose the response option associated with the pL cue (Response L) 64% of the time. The

response associated with the early trained cue pE (Response E) was chosen only 33% of

the time. The remaining 3% of responses were distributed across the other two response

options. As with the blocking results, we counted, for each participant, the number of

relevant L responses minus the number of relevant E responses, divided by the total

number of pE.pL trials (i.e., 8). We refer to this choice index as pLmpEc, for pL minus pE

for choice. The mean pLmpEc was 31%, which was significantly greater than 0,

t(120) = 7.46, p < .001, r2 = .32, reflecting a robust highlighting effect.

To determine whether the imperfect cue I became differentially associated with

outcome E, we examined responses to the I. class of test stimuli. Outcome E was chosen

66% of the time, compared to outcome L, which was chosen only 30% of the time. The

remaining 4% of responses were distributed across the remaining two response options. A

choice index, Ic, was computed by counting, for each participant, the number of E

responses minus the number of L responses, divided by the total number of I. trials (i.e.,

8). The mean Ic value was 36%, which was significantly greater than 0,

t(120) = 9.09, p < .001, r2 = .41, indicating that cue I was differentially associated with

outcome E.

Covariation of Effects

Following Kruschke et al. (2005), we obtained general indices of the overall blocking

and highlighting effects by summing the subcomponent choice measures. Thus, the
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blocking effect was indexed by DmBc+AmCc, and highlighting was indexed by

pLmpEc+Ic. Before investigating the patterns of correlations between blocking and

highlighting, in addition to the correlations among their component measures, we

corrected the empirical correlations for attenuation due to measurement error (Spearman,

1904). The correction for attenuation compensates for the fact that empirical correlations

are systematically biased downward when data are collected in the presence of

measurement error, and can result in corrected correlations greater than unity (see

Charles, 2005, for discussion). The corrected correlation is obtained by dividing the

empirical correlation by the geometric mean of the reliabilities of the variables being

correlated,

rxyc =
rxy√
rxxryy

. (1)

The need to correct for attenuation is greater with lower test reliabilities (Fan,

2003). We computed Cronbach’s αs both for the blocking and highlighting tasks as a

whole, and separately for the subclasses of test stimuli. For example, in the blocking task,

the response on each trial was coded as either consistent with blocking (+1, observed

response was associated with the control cue), inconsistent with blocking (-1, observed

response was associated with the blocked cue), or neither (0, observed response was not

associated with either cue presented on that trial). Table 5 summarizes the reliabilities

used to correct the raw empirical correlations.

We report both raw (written as remp) and corrected correlations (written as rcor)

below, p values are included for the raw correlations. For the corrected correlations, we

report 95% confidence intervals based on methods described by Charles (2005). We first

examined the correlation between the two component measures of blocking, which were

positively correlated, remp = .49, p < .001. Correcting for attenuation yielded,

rcor = .73, 95% CI = [.43, 1.25]. For the component highlighting measures, the results
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were less clear-cut. The raw empirical correlation was marginally significant,

remp = .16, p < .08, and although correcting for attenuation increased the magnitude of

the correlation, the 95% confidence interval narrowly included 0,

rcor = .31, 95% CI = [−.04, .73]. With the exception of the fact that the correlation

between the component highlighting measures was only marginal, we replicated the

general pattern of correlations reported by Kruschke et al. (2005).

We next examined whether the magnitudes of the overall blocking and highlighting

effects covaried within individuals. Curiously, we found no evidence of any correlation

between the magnitude of an individual’s blocking and highlighting effects,

remp = .04, p = .66, even after correcting for attenuation, rcor = .06, 95% CI = [−.22, .36].

This diverges from the results of Kruschke et al. (2005), who found a significant positive

correlation of .38. To confirm that our failure to find any correlation between blocking and

highlighting was not due to “impurities” introduced by the AmCc and Ic measures, we

correlated the component performance indices that map most directly onto the individual

blocking and highlighting effects (viz. by correlating DmBc with pLmpEc). This

correlation was also nonsignificant, remp = .10, p = .29, even after correcting for

attenuation, rcor = .17, 95% CI = [−.15, .52]. Given that our sample size was roughly

three times larger than that used by Kruschke et al. (2005), we are reluctant to ascribe

the absence of a correlation to a lack of power in our study.

We investigated the lack of correlation between blocking and highlighting effects via

computational modeling with EXIT (Kruschke, 2001b). We summarize the details of the

modeling here; full details are reported in Appendix A. Our hypothesis was that the

absence of a blocking-highlighting correlation was due to differential involvement of

dimensional attention across the two tasks; namely, that dimensional attention was

necessary to produce highlighting, but not blocking. We adopted a nested model

approach, whereby we fit EXIT to the combined data from the blocking and highlighting
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tasks. That is, the model was forced to fit both data sets with a common set of parameter

values. We then relaxed this constraint and allowed the model’s attention parameter

values to differ between the tasks. If the more flexible model produces a significant

improvement in fit to data, accounting also for the increased complexity of the more

flexible model, it is concluded that the additional flexibility is warranted by the data.

We found that EXIT could only account for the data quantitatively when its

attention parameters differed across the blocking and highlighting tasks. Inspection of the

parameter values revealed that the model utilized both attentional and associative

mechanisms for fitting the highlighting data. For fitting the blocking data, the model

effectively shut off its attention shifting and attention learning mechanisms, and instead

relied only on associative learning (see Appendix A for full details). The modeling is

consistent with previous theoretical claims that dimensional attention need not be invoked

to explain blocking per se (Rescorla & Wagner, 1972). It also confirms our hypothesis that

the absence of a blocking-highlighting correlation was due to differences in the attentional

demands of the tasks.

Although our conclusions about performance in the blocking task run counter to

those of Kruschke et al. (2005), it is well known that dimensional attention is not

necessarily required to explain blocking per se. Our results merely suggest that

identification of the determinants of whether a given example of blocking arises from

associative or attentional factors awaits future research. These issues do not impinge on

our primary focus of how individual differences in WMC relate to variation in blocking

and highlighting performance. We now report structural equation modeling that addresses

the key individual differences issues of interest.



Attention and Working Memory Capacity 23

Structural Equation Modeling

Measurement Models. The measurement model for WMC included a single latent

variable, which we label WMC. Consistent with previous applications of the WMC battery

(Lewandowsky et al., 2010), the fit of the model was improved by freely estimating the

correlation between the error terms associated with the OS and SS tasks. The benefit of

estimating the correlation between these error terms derives from the fact that the two

tasks are structurally quite similar. OS examines memory in the context of a numerical

processing task, whereas SS examines memory in the context of a verbal processing task.

The resulting model provided an excellent fit, χ2(2) = 0.0; CFI = 1.0; RMSEA = 0.0,

90% CI = [0.0, 0.0], SRMR = .0054. The loadings of the four manifest variables are

shown in the bottom row of Table 4.4

We explored several measurement models for the blocking and highlighting tasks.

The first model involved 6 manifest variables, four of which tracked learning performance;

namely, the (log transformed) total number of errors in the early and late phases of the

blocking and highlighting tasks. (For the highlighting task, we pooled the two late phases

into one; see Tables 2 and 3). The remaining two manifest variables tracked the

attentional aspects of the tasks; namely the overall measures of blocking and highlighting.

Means and variances of the manifest variables are reported in Table 6.

Because of the lack of correlation between the blocking and highlighting measures,

we were unable to investigate a two-factor model that considered learning separately from

dimensional attention. Instead, we investigated the loadings of each manifest variable onto

a single latent variable. All four learning indicators loaded significantly onto the latent

variable, in contrast to the attentional manifest variables (i.e., blocking and highlighting),

both of which failed to load.5 Accordingly, we label the latent variable in this model

Errors, and interpret the single-factor in terms of learning, not attention. The fit of the
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single-factor model was very good, χ2(9) = 7.7; CFI = 1.0; RMSEA = 0.0, 90% CI =

[0.0, 0.092], SRMR = .0455.

Structural Model. The two measurement models were combined into a final

structural model, shown in Figure 3. (Complete correlation matrices for both experiments

are provided in Appendix C). The structural model shows how learning accuracy in both

tasks (captured by the latent variable, Errors) relates to the WMC latent variable

measured by the WMC battery. The model fit very well with the weights involving

blocking and highlighting set to 0, χ2(35) = 30.3; CFI = 1.0; RMSEA = 0.0, 90% CI =

[0.0, 0.053], SRMR = .0554.

The significant negative correlation, r =-.44, between the latent variables WMC and

Errors indicates that higher WMC was associated with fewer errors during learning in

both the blocking and highlighting tasks. However, the lack of a measurement model for a

common attention construct prevents us from drawing conclusions about the relationship

between a putative dimensional attention construct and WMC. To address this issue, we

used the WMC measurement model to examine the relationship between the WMC latent

variable and each attention measure in isolation. For this analysis, tantamount to

investigating regression coefficients relating the behavioral indices of dimensional attention

(i.e., measures of the highlighting effect) to the WMC latent variable, we took the

measurement model for WMC, fixed all manifest variable loadings, then added the

highlighting index as well as its component indices, Ic and pLmpEc, as additional

indicators of the WMC latent variable. None of the highlighting measures loaded

significantly onto the WMC latent variable (βs for highlighting, Ic, and pLmpEc = -0.06,

-0.07, -0.02, respectively, ps > .43). Thus, we conclude that there is no evidence in our

data of a relationship between dimensional attention and WMC.

An apparent complication in interpreting the SEM results from Experiment 1 arises

from the fact that Lewandowsky (2011) found association learning in ALCOVE to
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correlate with WMC. That is, in his study, the association-learning parameter in

ALCOVE increased with people’s WMC when the model was fit to the data from

individual subjects. Given that our blocking effect was arguably associative in nature—as

revealed by modeling with EXIT—one might have expected blocking, but not

highlighting, to load onto the latent variable in our structural equation model. Upon

further investigation, this lack of loading turned out to reflect the fact that the

conventional measure of blocking did not adequately reflect the associative history

between cues and outcomes. We report the results of this extended analysis in Appendix

B, noting that once associative history is accounted for, blocking performance loads onto

the Errors latent variable in the expected manner.

To summarize the SEM results, our findings are completely consonant with related

precedent (Craig & Lewandowsky, in press; Lewandowsky, 2011; Lewandowsky et al.,

under review). All manifestations of association learning are related to WMC whereas

there is no obvious link between dimensional attention and WMC.

Implications

The structural equation modeling converges on a clear conclusion: Dimensional

attention and WMC are distinct theoretical constructs. Individual differences in learning

of both tasks in Experiment 1 was characterized by a single latent variable that was

significantly correlated with WMC. By contrast, we failed to find any relationship between

blocking and highlighting, the latter of which was confirmed to be mediated by

dimensional attention (see Appendix A), and WMC. Both aspects of our results mesh well

with the results of Lewandowsky (2011) who found minimal attentional involvement in the

modeling of individual differences in learning of the Shepard problems.

The results of Experiment 1 are compatible with two competing conclusions: One

possibility is that executive attention as defined in the working memory arena is entirely
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distinct from attention in category learning (viz. dimensional attention). Another

possibility is that executive attention is involved in category learning, but is related

instead to representational attention, which is implicated in more complex categorization

tasks involving the coordination of multiple category representations. We investigate this

possibility in Experiment 2.

Experiment 2: Knowledge Restructuring

Whereas Experiment 1 investigated the link between WMC and dimensional

attention, Experiment 2 focuses on a possible relationship between WMC and

representational attention (Erickson, 2008; Erickson & Kruschke, 1998, 2002b). In

categorization, representational attention is invoked in situations where different subsets

of stimuli are classified on the basis of different representational formats; for example,

some stimuli may be classified according to a rule, whereas an exemplar-based

representation might handle a different subset of stimuli.

The distinction between dimensional attention on the one hand and representational

attention on the other is illustrated schematically in Figure 4. Each panel depicts a

scheme for relating stimulus inputs to category outputs. In the top panel, dimensional

attention affects the pattern of exemplar activation by selectively enhancing inputs along

dimensions D1 and D2—increased dimensional attention weights are drawn in boldface in

the figure. Category responses are determined by the stimulus-response mapping, which in

the top panel is a matrix of exemplar-to-category associations. The bottom panel

illustrates a model with both dimensional and representational attention. The effects of

dimensional attention are the same as those in the top panel. Representational attention

gates the associations between individual exemplar nodes and the various representational

formats available to the model: Exemplars 1 and 2 gate access to representation R1,
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whereas Exemplars 3 and 4 gate access to representation R2. Category responses are

determined by the output of the selected representation.

In the figure, the exemplar-to-category association matrix in the

dimensional-attention model (top panel) is assumed to be identical to R1 in the

representational attention model (bottom panel). Models with only dimensional attention

can be viewed as special cases of representational-attention models: For example, the

model shown in the bottom panel can be reduced to the model in the top panel if the

distribution of representational attention is such that each exemplar gates access to a

common representation (e.g., if all exemplar nodes selectively accessed R1). Thus, models

with representational attention can be seen as supersets of models that only comprise

dimensional attention.

One category learning model that implements representational attention is

ATRIUM, which minimally learns to associate stimuli with either a rule or exemplar

representation, one or the other of which determines classification (Erickson & Kruschke,

1998). The pattern of activation across ATRIUM’s exemplar nodes is determined by the

model’s allocation of dimensional attention. Exemplar activations determine, via a

representational-attention “gate,” whether a rule representation or exemplar-based

representation is accessed and subsequently used to generate a category response.

Representational attention is therefore inextricably related to the coordination of multiple

category representations, which individually constitute subsets of partial category

knowledge. Within ATRIUM, dimensional and representational attention are distinct, but

related constructs. They are distinct because dimensional attention is involved in

similarity computations and the weighting of stimulus input, whereas representational

attention is involved in the selection of a category representation. They are related in that

shifts of representational attention can be induced by lower-level shifts of dimensional

attention (Sewell & Lewandowsky, 2011).



Attention and Working Memory Capacity 28

The notion of representational attention, and the attendant coordination of partial

knowledge, is readily explored in so-called knowledge restructuring tasks, which involve

switching between a number of candidate response strategies (e.g., Kalish, Lewandowsky,

& Davies, 2005; Lewandowsky, Kalish, & Griffiths, 2000; Little, Lewandowsky, & Heit,

2006; Sewell & Lewandowsky, 2011). For example, the study by Sewell and Lewandowsky

(2011) involved the coordinated application of two partial categorization rules to different

subsets of stimuli. Their category structure, which was also used in our Experiment 2, is

shown in Figure 5 along with two example stimuli.

The stimuli were rectangles that varied along two dimensions: The height of the

rectangle, and the position of a vertically oriented bar along the base of the stimulus. The

rectangle width was fixed. Thus, each point in Figure 5 corresponds to a different

configuration of rectangle height and bar position. The example stimulus shown on the

left side of the figure was sampled from the bottom left region of the category space (short

rectangle with bar position on left), whereas the example stimulus on the right side of the

figure was sampled from the top right region of the space (tall rectangle with bar position

on right).

Experiment 2 was broken down into different phases comprising training and test

blocks. On each trial during training blocks, participants were required to categorize a

single stimulus from among the set of training stimuli (represented as filled diamonds in

the figure); responses were immediately followed by corrective feedback. On each trial

during test blocks, participants categorized a single stimulus drawn from the set of

transfer stimuli (represented as open squares in the figure); no feedback was provided

during any test block.

Several features of the category structure make it diagnostic of the use of

representational attention. Note that there are two separate clusters of training stimuli,

one in the bottom left corner of the category space, the other in the top right. Each
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cluster comprises 20 Category A stimuli and 20 Category B stimuli, which are separated

from one another by a partial category boundary (along one of the stimulus dimensions).

With respect to the left training cluster, Category A stimuli are situated below the partial

boundary, whereas Category B stimuli are situated above the boundary. With respect to

the right training cluster, Category A stimuli are placed to the left of the boundary,

whereas Category B stimuli are placed to the right of the boundary. Note that the two

partial boundaries cannot be integrated in a coherent manner—neither partial boundary

can be extended in a way that permits accurate classification of the training cluster

straddling the other partial boundary. Thus, the category structure is ideally suited to

observe the coordination and selective application of multiple partial rules.

In addition to the two stimulus dimensions depicted along the x and y axes in

Figure 5, a third binary context dimension (instantiated by stimulus color) was

systematically mapped onto the two training clusters. For example, all training stimuli in

the cluster straddling the left partial boundary may have been presented in red, whereas

stimuli from the right training cluster may have been presented in green. The inclusion of

this third context dimension enables at least two ways in which the partial categorization

rules could be coordinated and applied to the broader set of transfer stimuli. Under a

knowledge partitioning (KP) strategy, context is used to determine whether the left or

right partial boundary is applicable. By contrast, under a context insensitive (CI)

strategy, the position of the stimulus along the x axis (i.e., whether a stimulus is on the

left- or right-hand side of the space) determines which rule to apply.6 Both strategies can

support perfect performance during training (stimuli represented by filled diamonds in the

figure), but they lead to qualitatively different patterns of performance on the transfer test

(open squares), when the entire set of transfer stimuli are presented once in each context.

Figure 6 illustrates idealized versions of these two response profiles.
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Sewell and Lewandowsky (2011) instructed participants to use either the KP or CI

strategy at the outset. In each case, people were told that for each stimulus, only a single

dimension was required for categorization, but that the relevant dimension depended on

the stimulus itself. Thus, participants were told that bar position determined category

membership for some stimuli, but rectangle height determined category membership for

others. People instructed to use the KP strategy were told that context (i.e., stimulus

color) reliably indicated whether height or bar position was diagnostic. By contrast, people

instructed to use the CI strategy were told that bar position (i.e., whether the bar was on

the left- or right-hand side of the stimulus) indicated which dimension was diagnostic.

Thus, people were told to initially use one stimulus dimension to gate subsequent use of

another stimulus dimension to perform categorization. Participants completed an initial

training phase, followed by a transfer test, performance on which was diagnostic of

strategy use. Participants were then instructed to use the contrasting strategy—which

had never been mentioned before—before completing another transfer test. People who

were initially told to gate rule use on the basis of context were informed that bar position

should be used to determine the relevant stimulus dimension, and vice-versa.

In a final testing phase, instructions were yet again reversed and people reverted to

their original strategy. Thus, participants performed the task either under KP–CI–KP

instructions or in a CI–KP–CI order. Several aspects of the results are noteworthy. People

were able to rapidly and repeatedly recoordinate their partial knowledge in response to

instructions: Whenever they received the KP instructions, their transfer profiles resembled

those in the bottom panels of Figure 6, and whenever they received CI instructions, their

profiles resembled the top panels. Remarkably, people could shift between strategies

without requiring any training on the novel strategy—thus, learning under CI instructions

enabled people to switch to the KP strategy, and vice versa, simply in response to a
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written hint and without feedback-driven learning. We used the same instructional regime

in Experiment 2.

Sewell and Lewandowsky (2011) showed that this repeated, fluid, and

near-instantaneous knowledge restructuring was incompatible with a slow associative or

attentional learning process, as instantiated in ALCOVE (Kruschke, 1992). Instead, the

results were quantitatively modeled by a version of ATRIUM that was equipped with

multiple rule representations (cf. Yang & Lewandowsky, 2004). In ATRIUM, knowledge

restructuring was modeled by a shift in dimensional attention, which in turn elicited a

shift in representational attention. Specifically, when the context dimension had a high

dimensional attention weight, gating of the rule representations was based on context,

thereby implementing the KP strategy; when the x dimension had a high dimensional

attention weight, rule selection was determined by the stimulus position along the x axis,

irrespective of context, thus implementing the CI strategy. Sewell and Lewandowsky

(2011) further showed that the content of the rules underpinning the KP and CI strategies

was virtually identical: Associations within the rule modules were highly correlated

regardless of which response strategy was used at transfer. The fact that common

rule-based knowledge was used to instantiate both strategies provides converging evidence

that the observed restructuring was driven solely by a shift in representational attention.

The controlled and volitional aspect of the knowledge restructuring reported by

Sewell and Lewandowsky (2011) distinguishes it from Experiment 1 and the category

learning tasks investigated by Lewandowsky and colleagues (Craig & Lewandowsky, in

press; Lewandowsky, 2011; Lewandowsky et al., under review): Switching strategies did

not involve a rapid shift of dimensional attention provoked by the stimulus (as in

highlighting), nor was there a performance-related error signal to direct gradual learning

of dimensional attention (as in blocking and typical supervised categorization). Whereas

the attentional factors involved in blocking (when it involves attention), highlighting, and
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supervised categorization tasks can be viewed as “bottom-up,” knowledge restructuring

and recoordination can occur in the absence of changes in the stimulus, and are thus

better characterized as involving “top-down” attentional control.

We suggest that control over the coordination of multiple rule representations

relates closely to notions of executive attention as discussed in the working memory

literature. Application of one cognitive strategy over another that affords equal

performance requires a high degree of top-down control involving a combination of

selectively maintaining one set of task goals associated with one strategy while selectively

suppressing a competing set of goals associated with another strategy. Theoretically, this

maps well onto contemporary notions of executive attention (e.g., Engle, 2002; Engle &

Kane, 2004; Engle et al., 1999; Kane et al., 2001, 2007). We thus expected that the extent

to which people can restructure their knowledge and switch categorization strategies

should correlate with measures of WMC.

Method

Experiment 2 was similar to the first study, with the primary difference being the

nature of the categorization task. In the first categorization session, we initially instructed

participants to learn either the KP or CI strategy by telling them that either the context

or bar position indicated whether the stimulus could be categorized on the basis of

rectangle height or bar position. The category structure was identical regardless of

instruction condition.

People then completed a training phase, which was followed by a transfer test.

Afterwards, participants were instructed to switch response strategies, and had to

categorize the entire set of transfer stimuli without having practiced the new strategy.

That is, people who were initially told to select rules on the basis of context, were now

told to select rules on the basis of bar position, and vice-versa.
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In the second categorization session, participants had an opportunity to practice the

new strategy, followed by another transfer test. Upon completion of the transfer test,

participants were again suddenly instructed to switch response strategies before

completing a fourth and final transfer test (i.e., in the second test following Categorization

Session 2 they were instructed to reinstate their original response strategy from the first

session).

Participants and WMC measurement

A total of 106 people from The University of Western Australia community

participated either in exchange for course credit or remuneration at a rate of A$10 per

hour. Working memory capacity was assessed in the same way as in Experiment 1 in the

first of three experimental sessions.7

Participants were randomly allocated to one of 8 modular sequences that were

analogous to those from Experiment 1. Each sequence involved a unique pre-loaded trial

order and stimulus assignment. The mapping between color and context was

counterbalanced across modular sequences. Half of the modular sequences required

participants to learn the KP strategy first.

Procedure

The categorization part of the study involved two sessions carried out on separate

days. Each session involved a training period followed by two successive transfer tests. For

clarity, we refer to the transfer tests from Categorization Session 1 as Tests 1 and 2, and

those from Categorization Session 2 as Tests 3 and 4. The task involved categorization of

rectangle stimuli that varied along two dimensions: The height of the rectangle (y

dimension in Figure 5) and the horizontal offset of a bar located along the base of the

rectangle (x dimension in Figure 5). Depending on which modular sequence a participant

was assigned to, they were instructed to learn either the KP (KP-first condition) or CI
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(CI-first condition) strategy; 53 people were assigned to each condition. For the KP-first

condition, participants were informed that context determined whether the x or y

dimension was relevant for a given stimulus. For the CI-first condition, participants were

told that the position of the bar offset (on either the left- or right-hand side of the

stimulus) determined whether the x or y dimension was relevant for categorizing a

particular stimulus. No information about the positioning of the partial rule boundaries

along each dimension was given (i.e., there was no mention of specific “cutoff” values).

Training involved 6 40-trial blocks; each training stimulus was presented once per

block with presentation order determined by the random permutation for the particular

modular sequence. For Categorization Session 1 only, we allowed for an early exit from

training if a participant made 40 consecutive correct responses. The earliest possible exit

was after completion of 4 complete training blocks (160 trials). Because this is a fairly

stringent criterion, it seemed unlikely to pose any problems in interpreting subsequent test

performance (Tharp & Pickering, 2009). For the purposes of assessing training accuracy,

it was assumed that participants who met the early exit criterion achieved perfect

performance for the remainder of the training period. There was no early exit from

Categorization Session 2 training, which was only 2 blocks in duration (80 trials).

Results

Data Screening

We applied the same retention thresholds as in the first study. Three participants

(two from the CI-first condition, one from the KP-first condition) failed to perform better

than chance in the categorization task (i.e., assuming a binomial response model, greater

than 65% in the final training block of the first session). A further two participants scored

less than 70% on at least one of the WMC processing tasks. A further participant was
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removed due to incomplete WMC data, yielding a final sample of 100 participants for

analysis.

Working Memory Battery

Table 7 shows summary statistics for the WMC battery. Not surprisingly, the data

mirror the results of the first experiment.

Categorization Analysis

Training Performance. Training performance in Categorization Session 1 was very

similar in both the KP-first and CI-first conditions. Performance was highly accurate

overall, with 32 people from the CI-first condition and 32 people from the KP-first

condition achieving the early exit criterion. For the remaining participants in each

condition, performance on the final Categorization Session 1 training block was highly

accurate, M = 89% for both the CI-first and KP-first conditions. Training performance in

the final Categorization Session 2 training block was comparably high (Ms = 95% and

96% for the CI-first and KP-first conditions, respectively). Thus, we conclude that the

training sets were learned extremely well—and to an equal extent—in both conditions and

under both response strategies.

Strategy Differences in Test Performance. To confirm the effectiveness of the initial

instructions, we compared performance of the KP-first and CI-first conditions on Transfer

Test 1. The averaged response profiles for each condition are presented in Figure 7. Each

square in the figure shows the probability of generating an “A” response, P (A), for that

stimulus. It is clear that the CI-first condition relied on the CI strategy, whereas the

KP-first condition used a context-sensitive knowledge partitioning strategy.

To compare performance of the two conditions statistically, we first divided the

space into four diagnostic regions by aggregating across transfer stimuli in the four
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quadrants of the space (i.e., the regions defined by the dashed lines and labeled

numerically in Figure 5) for each context. We then averaged the aggregated response data

across participants. A 2 (Condition) × 2 (Context) × 4 (Quadrant) between-within

ANOVA returned a significant 3-way interaction, F (3, 294) = 92.89, MSe = .01,

p < .001, η2
p = .29, reflecting the differential sensitivity to context between conditions.

Follow-up Condition × Quadrant between-within ANOVAs on performance within each

context revealed condition-specific patterns of responding across Quadrants; significant

interactions were observed in the left context, F (3, 294) = 47.03, MSe = .02, p < .001, η2
p

= .32, and the right context, F (3, 294) = 89.05, MSe = .03, p < .001, η2
p = .48. The

pattern of results demonstrates that the hints were effective at determining the manifest

categorization strategy in the first transfer test.

Performance on all other transfer tests corresponded very closely to the two patterns

shown in Figure 7. To efficiently capture changes in strategy use across all four transfer

tests, we introduce a context-sensitivity measure that tracks usage of the KP and CI

strategies. This measure was computed by taking the average item-wise difference in P (A)

for stimuli that would be categorized differently between contexts if the KP strategy were

perfectly applied (see Figure 6). Responses for the four stimuli in the bottom right corner

of the space were reverse coded for this analysis, as categorization of these stimuli changes

in the opposite manner to all other relevant stimuli as a function of context under the KP

strategy. Thus, context sensitivity ranges from −1 to +1, with positive values reflecting

response patterns consistent with application of the KP strategy, and values near 0

reflecting usage of the CI strategy. Accordingly, Test 1 performance in the KP-first

condition was associated with a high context sensitivity score, M = .87, whereas the

CI-first condition was associated with a low score, M = .10. Figure 8 plots context

sensitivity as a function of transfer test for both conditions. It is clear that the hints had

immediate and opposite effects on performance across the two conditions.
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Also of note is the apparent asymmetry of knowledge partitioning between the two

groups. Participants in the CI-first condition, who were initially trained to ignore context,

appeared to exhibit weaker knowledge partitioning than participants in the KP-first

condition — compare the context sensitivity scores of the CI-first condition in Tests 2

and 3 to those of the KP-first group in Tests 1 and 4. By contrast, there was no

discernible difference between the groups when implementing the CI strategy. This

asymmetry implies a selective difficulty with shifting from the CI to the KP strategy that

is absent in the reverse direction. We interpret this difference in terms of dimensional

relevance shifts: It is known that it is easier to attend to a previously-relevant stimulus

dimension than it is to attend to a previously-ignored dimension (Hoffman & Rehder,

2010; Kruschke, 1996b). We first note that under both strategies, the rectangle height and

bar position dimensions were necessary for categorization. The difference between

conditions was whether the context dimension was to be used in addition to the other

stimulus dimensions. For people in the KP-first condition, all stimulus dimensions were

relevant during initial training, and so restructuring to the CI strategy involved using a

previously relevant stimulus dimension (bar position) for a new purpose (rule selection).

By contrast, people in the CI-first condition were effectively instructed to ignore the

context dimension during initial training (i.e., context was not involved in either rule

selection or categorization). Thus, restructuring to the KP strategy involved having to use

a previously irrelevant stimulus dimension for the purposes of rule selection.

Sewell and Lewandowsky’s (2011) modeling of a similar pattern of results with

ATRIUM provides convergent support for the relevance shift interpretation of the

asymmetrical knowledge restructuring in Figure 8. Sewell and Lewandowsky modeled

knowledge restructuring by implementing changes in ATRIUM’s distribution of

dimensional attention, which in turn caused shifts of representational attention. There

was an asymmetry in changes in the attentional loading on the context dimension that
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mirrored the context sensitivity data. For example, between Tests 1 and 2, the attention

weight on context dropped from .74 to 0 for the KP-first condition, but increased only

from .04 to .65 for the CI-first condition. Thus, the ability of the CI-first condition to

attend to the context dimension appeared weaker than the ability of the KP-first

condition to ignore it in Test 2. It is perhaps puzzling that participants’ additional

training between Tests 1 and 2 did not further increase context sensitivity in the CI-first

condition. Given the difficulty in attending to a previously irrelevant stimulus dimension,

we suggest that the absence of an error signal during training may be the reason the

CI-first condition was unable to achieve the same level of context sensitivity as the

KP-first group when implementing the KP strategy—both the KP and CI strategies

would result in perfect training performance.

We now focus on two key statistical tests of knowledge restructuring; namely,

changes in context sensitivity between Tests 1 and 2 (to test for initial knowledge

restructuring), and context-sensitivity changes between Tests 3 and 4 (to test for strategy

recovery). In the KP-first condition, there was a clear drop in context sensitivity between

Tests 1 and 2 (M = −.88), reflecting knowledge restructuring from the KP to the CI

strategy, t(49) = −30.05,p < .001, r2 = .95. By contrast, in the CI-first condition, context

sensitivity increased between Tests 1 and 2 (M = .55), reflecting restructuring from the CI

to the KP strategy, t(49) = 9.82, p < .001, r2 = .66. The patterns of restructuring between

Tests 3 and 4 were consistent with recovery of people’s original response strategy. In the

KP-first condition, context sensitivity between Tests 3 and 4 increased (M = .74), as

people restructured from the CI strategy in Test 3 to the KP strategy in Test 4,

t(49) = 12.80, p < .001, r2 = .77. In the CI-first condition, there was a reduction in

context sensitivity (M = −.62), as people reverted back to the CI strategy, and away from

knowledge partitioning, t(49) = −10.57,p < .001, r2 = .70. To determine whether the

knowledge restructuring between Tests 3 and 4 involved recovery of people’s original
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response strategy, we correlated responses to the diagnostic stimuli (i.e., those that were

sensitive to knowledge restructuring) from Tests 1 and 4 for the KP-first and CI-first

conditions. In both cases, the correlations were very high, r = .99 (KP-first), r = .98

(CI-first), implying strategy recovery.

Structural Equation Modeling of Experiment 2

We investigated a number of structural equation models to explore the relationship

between WMC and knowledge restructuring in the categorization task. Distributions of

manifest variable data were either approximately Gaussian, or were log transformed to

achieve normality, as discussed below.

Measurement Models. As in Experiment 1, we developed separate measurement

models for the WMC battery and the categorization task, which we later combined into a

structural model. The measurement model for WMC again included a single latent

variable (WMC ) and a freely-estimated pairwise correlation between the error terms

associated with the OS and SS tasks. The model fit extremely well, χ2(1) = 0.8,

CFI = 1.0, RMSEA = 0.0, 90% CI = [0.0, 0.255], SRMR = .0132. The loadings of the

four manifest variables are shown in Table 7.

The measurement model for the categorization task involved 5 manifest variables.

Three of the variables described training performance using the log transformed total

number of errors: For Categorization Session 1, the two manifest variables described

performance in blocks 1-3, and 4-6, respectively. For Categorization Session 2, a single

variable described performance in blocks 7 and 8. The remaining two manifest variables

corresponded to the absolute changes in the context-sensitivity measure within each

testing session. Changes in context sensitivity reveal the extent of transition between the

KP and CI strategies, and thus reflect the extent of knowledge restructuring within each

session. Means and variances of the manifest variables are reported in Table 8.
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We initially considered a two-factor measurement model, in which we associated one

latent variable with the indices of learning, and the second latent variable with the

representational attention measures (viz. the extent of knowledge restructuring in each

session). On the basis of modification indices, a correlation between the error terms

associated with training performance in the first and second halves of Categorization

Session 1 was freely estimated. The two-factor model fit the data very well, χ2(3) = 3.42,

CFI = .997, RMSEA = .038, 90% CI= [0.0, 0.178], SRMR = .0275, with all manifest

variables loading in the expected way onto their latent variables. Constraining the

correlation between the Error and Knowledge Restructuring latent variables to unity

resulted in a significant decrement in fit, ∆χ2(1) = 4.08, p ≈ .04, justifying retention of a

second factor in the model.

Structural Model. The measurement models for the WMC battery and the

categorization task were combined to yield a three-factor structural model. The structural

model fit the data well, χ2(22) = 18.14, p = .70, CFI = 1.0, RMSEA = .0, 90% CI =

[0.0, 0.066], SRMR = .0458, and is presented in figure 9. The correlations among the

three latent variables in Figure 9 are of the most interest. First, there is a strong negative

correlation between the Errors latent variable and the Knowledge Restructuring latent

variable, r =-.81, showing that more extensive restructuring was associated with more

accurate learning. Second, WMC was negatively correlated with Errors, r =-.43, showing

that WMC was related to fewer errors during learning. This relationship replicates the

one we found in Experiment 1 between WMC and learning and it buttresses other work

that has found a uniformly positive link between WMC and category learning (cf. Craig

& Lewandowsky, in press; Lewandowsky, 2011; Lewandowsky et al., under review).

Finally, there was a significant positive correlation between WMC and Knowledge

Restructuring, r = .36, showing that higher WMC was related to a greater extent of

restructuring. The latter result directly implicates an association between WMC and
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representational attention, showing that the two constructs share unique variance that is

not accounted for by overall learning.

Individual variation in learning performance and the extent of knowledge

restructuring were both shown to load onto latent variables associated with WMC. The

pattern of results is consistent with the idea that the form of attention that is responsible

for the coordination (and recoordination) of multiple categorization rules is related to the

executive attention concept often invoked in working-memory research. By the same

token, this form of attention differs from other manifestations of learned attention in

category and association learning. We suggest that the knowledge restructuring in

Experiment 2 was reliant on executive attention, whereas the highlighting effect from

Experiment 1 was reliant on learned dimensional attention—only the former, but not the

latter, shares unique variance with working memory capacity.

Implications

The key empirical contribution of Experiment 2 is the discovery that the extent of

knowledge restructuring shares unique variance with WMC. The overall relationship is one

of higher working memory capacity being associated with greater knowledge restructuring.

That is, the extent to which people were able to successfully change categorization

strategies was positively related to their working memory capacity. Because it is known

that transitioning between the KP and CI strategies requires recoordination of partial

category representations (Sewell & Lewandowsky, 2011), the correlation between the

latent variables is plausibly attributable to an executive attention mechanism that enacts

top-down selection of partial knowledge.

A clear implication for category learning is that the construct of “attention” must

be nuanced to distinguish between feature-based or dimensional attention on the one hand

and executive attention on the other. Although dimensional attention played a central
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role in performance in both experiments, only Experiment 2 required executive control

over the coordination of multiple category representations.

General Discussion

We examined the relationship between WMC and two forms of attention in

category/associative learning. Experiment 1 explored the relationship between WMC and

dimensional attention using associative blocking and highlighting paradigms, which are

widely thought to engage attentional factors (Kruschke et al., 2005). We found no

evidence of any relationship between WMC and the magnitude of blocking and

highlighting effects. Instead, we found that WMC related to overall learning performance

(cf. Craig & Lewandowsky, in press; Lewandowsky, 2011; Lewandowsky et al., under

review). Experiment 2 used a knowledge restructuring task that required representational

attention to mediate changes in response strategies. In this case, we found that WMC

related to both learning performance and the extent to which people could shift between

response strategies. Taken together, the results imply that the relation between attention

and WMC in categorization is determined by the need to coordinate multiple elements of

partial knowledge (e.g., multiple categorization rules). In tasks that do not require

coordination of multiple representations, WMC would only be expected to play a role in

learning of stimulus-to-response associations (e.g., Lewandowsky, 2011). However, when

the task requires coordination of multiple representations, people with higher WMC would

be more effective at selectively accessing them, or alternatively, to be more effective at

setting top-down attentional control parameters that determine how representational

selection occurs on a trial-by-trial basis (e.g., as suggested by Erickson, 2008). Our results

speak to a number of theoretical perspectives on attention, learning, and WMC. Before

discussing these implications, we take up some potential limitations of the current studies.
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Limitations

The principal limitation of the current experiments relates to the between-subjects

nature of the comparisons between dimensional and representational attention. That is,

different sets of people participated in the two experiments. This precludes comparison of

the two modes of attention using an individual-differences approach. Pragmatic

constraints prevented testing of the same individuals in all tasks.

A second potentially problematic aspect of the current results concerns the failure

to observe a significant correlation between the magnitudes of the blocking and

highlighting effects in Experiment 1. Our results stand in contrast to those of Kruschke et

al. (2005) despite the fact that the tasks in our first study were largely identical to theirs.8

Notwithstanding the necessary reluctance to accept a null result, our study appears

unlikely to have been underpowered, given that our sample size was roughly three times

that of Kruschke et al. (2005); namely 121 vs. 33. On the basis of modeling with EXIT

(see Appendix A), we suggest that the absence of correlation likely reflects, at least in our

study, differential involvement of associative and attentional mechanisms in blocking and

highlighting. Theoretically, this result is in line with classical models that are able to

explain the blocking effect without recourse to attention (Rescorla & Wagner, 1972).

However, considered against the backdrop of more recent results that have shown

attentionally mediated consequences of blocking (Beesley & Le Pelley, 2011; Kruschke,

2005b; Kruschke & Blair, 2000; Le Pelley et al., 2007), our results are somewhat puzzling.

For now, we have good reason to accept that only highlighting involved attentional

processes in our Experiment 1. The circumstances that determine whether a given

example of blocking is attentional or associative in nature remain to be seen; the

identification of such circumstances is a worthy target for future research.
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Attention, Working Memory Capacity, and Category Learning

In category learning, attention has traditionally played a relatively circumscribed

theoretical role, typically capturing the differential relevance of stimulus features

(Kruschke, 2005a). For the most part, this is a parsimonious approach, as dimensional

attention suffices to explain many category learning phenomena. More recently though,

researchers investigating more complex category structures have shown that dimensional

attention alone may not be enough to fully explain category learning (Aha & Goldstone,

1992; Denton, Kruschke, & Erickson, 2008; Erickson, 2008; Erickson & Kruschke, 1998,

2002a; Lewandowsky, Roberts, & Yang, 2006; Little & Lewandowsky, 2009; Sewell &

Lewandowsky, 2011; Yang & Lewandowsky, 2003, 2004). In some cases, as in the

ATRIUM model with its modular architecture, an additional “layer” of attention (i.e.,

representational attention) has been required to explain performance. The current study

has further reinforced the need to distinguish between dimensional and representational

(or executive) attention in category and associative learning. Whereas shifts in

dimensional attention suffice to capture many aspects of learning that arise as a

consequence of manipulating the dimensional relevance structure (e.g., Kruschke, 1996b),

only shifts in representational attention are able to account for abrupt strategy shifts such

as those related to knowledge restructuring (e.g., Sewell & Lewandowsky, 2011).

It is noteworthy that the representational attention shifts in Experiment 2 were

controlled and volitional, in that participants had to deliberately change the way in which

they coordinated rule use in order to comply with instructions. Although this is a

distinctive feature of the task we used, and a driver of knowledge restructuring, there is

nothing inherently volitional about shifting representational attention in ATRIUM, for

example. We suggest that the deliberate control over the distribution of representational

attention plays a particularly important role in relating knowledge restructuring and

WMC. The need to selectively engage one modularized subset of knowledge at a time gels



Attention and Working Memory Capacity 45

nicely with the fact that WMC relates to the ability to resist proactive interference (Engle,

2002; Engle et al., 1999; Kane et al., 2001; Oberauer & Kliegl, 2001). That people in our

experiment were able to successfully reinstate their original response strategy in Test 4 of

the category learning task is further suggestive of this protective function of executive

attention. The alignment of executive attention with WMC has clear implications for

perspectives on category learning that foreground the role of working memory.

Recently, several category learning theorists have hypothesized that working

memory might be differentially involved in different types of categorization tasks (Ashby

& Maddox, 2005). These authors have suggested that rule-based tasks—such as those we

used here—tax working memory, whereas other so-called information-integration tasks do

not (Ashby & O’Brien, 2005; see Newell, Dunn, & Kalish, 2011, for a contrasting

perspective). Information-integration tasks are not solvable by a verbalizable rule and

require the integration of two or more aspects of the stimulus at a pre-decisional stage. In

contrast to that expectation, our relevant work to date has produced quite stable and

reproducible results: Across six experiments involving over 800 participants in total,

WMC has been found to be associated with overall levels of learning, regardless of whether

tasks place differential demands on dimensional attention (Craig & Lewandowsky, in press;

Lewandowsky, 2011), or are rule-based or require information-integration (Lewandowsky

et al., under review). We attribute the stability of our findings to our latent variable

approach to measuring WMC, which permits a more robust assessment of WMC that is

free of measurement error and avoids problems arising from the substantial task-specific

variance associated with individual working memory tasks (Lewandowsky et al., 2010).

Top-down vs. Bottom-up Processing

Our provisional alignment of executive and representational attention emphasizes

the contribution that controlled, top-down, processes make to category learning. The
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emphasis on volitional processing is underscored by the fact that knowledge restructuring

was elicited by a deliberate shift of representational attention. In complex categorization

tasks such as those involving task partitioning or knowledge restructuring, the controlled

coordination of different components of partial knowledge is critical. For example, the

knowledge restructuring observed in Experiment 2 required systematic changes in the way

rule representations were selectively accessed over the course of the experiment. The final

session of Experiment 2 in particular required actively applying one response strategy

whilst passively maintaining the alternative strategy. The simultaneous selection and

suppression of subsets of strategic information bears close resemblance to notions of

executive attention (e.g., Engle & Kane, 2004; Kane et al., 2007). The fact that WMC

was strongly associated with the extent of knowledge restructuring is quite consistent with

the idea of executive attention playing a key role in recoordination in particular, and

knowledge restructuring more generally.

The link between representational attention and WMC is readily contrasted with the

absence of any relationship between WMC and dimensional attention (e.g., Experiment 1,

and Lewandowsky, 2011). The latter is suggestive of a contribution of stimulus-driven,

bottom-up, processes in categorization tasks that do not require coordination of

knowledge or executive control. The idea that highlighting and more elaborate blocking

designs may involve bottom-up factors is supported by the finding that manipulating the

salience of the blocked cue can greatly attenuate the blocking effect (Denton & Kruschke,

2006). Similarly, Lamberts and Kent (2007) argued that highlighting is unlikely to be

mediated by strategic, top-down factors, such as explicit hypothesis testing because the

effect persists even under severe time pressure to respond (e.g., within 300 and 500 ms).

By a similar token, there is much evidence to suggest that bottom-up attentional factors

are unrelated to WMC. Kane et al. (2001) examined the relationship between working

memory span and performance in prosaccade and antisaccade tasks where people,
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respectively, had to orient attention toward or away from a highly salient peripheral cue

(e.g., Posner, 1980). Whereas the prosaccade task involved exogenous (bottom-up)

reflexive orienting, the antisaccade task involved endogenous (top-down) controlled

orienting. Only performance on the antisaccade task was related to working memory span.

Alternative views of working memory

Although we have interpreted our results within the framework of an

executive-attention view of working memory, and although our results mesh well with that

notion, we do not selectively endorse this view over other theoretical approaches to

working memory. For example, Oberauer and colleagues (e.g., Oberauer, Süß, Wilhelm, &

Sander, 2007) have developed a tripartite approach to working memory that involves three

concentric “layers” of increasingly accessible and active information: The first layer

corresponds to the activated portion of long-term memory, the second is known as a

“direct-access region,” and the final, most highly active layer is a single item that is in the

“focus of attention.” WMC is thought to be associated with the size of the direct-access

region; that is, the number of items that are available for immediate processing.

A crucial property of the direct-access region is that it temporarily binds together

representations that are required for cognitive operations. For example, item

representations may be bound to their temporal context, they may be bound to a spatial

location, and they may be transformed before being bound to a new or different context

(e.g., Ecker et al., 2010). The notion of binding is particularly relevant in the present

context because long-term (category) learning is thought to involve transfer of information

from the direct-access region to long-term memory. However, at present the exact role of

short-term binding during long-term learning is far from clear; Oberauer’s model is thus

best considered as a pointer towards future theoretical development of a process model

relating WMC to long-term category learning. As a step in that direction, Lewandowsky
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(2011) showed that WMC can map into additional “rehearsals” within ALCOVE,

suggesting that people with higher WMC are better able to retain bound representations

of stimuli in working memory for successive strengthening of their long-term connections

with the response options. It remains for future research to explore how the binding

notion favored by Oberauer and colleagues maps into the executive-attention notion

required to explain the knowledge restructuring results of Experiment 2.

Future Directions

Although this paper has addressed a number of issues on the emerging relationship

between working memory and categorization, our work has also opened up a number of

theoretical questions that remain unanswered. We thus briefly offer suggestions for future

research. With regards to theories of learning and attention, our failure to find an

attentional locus of the blocking effect (see Appendix A for full details) can be contrasted

with a variety of findings that have found attentional consequences of blocking (e.g.,

Beesley & Le Pelley, 2011; Kruschke, 2005b; Kruschke & Blair, 2000). A key factor seems

to be the overall complexity of the blocking design. Studies that have found evidence for

attentional effects of blocking have usually used more complicated designs that involve

multiple testing phases, and larger sets of stimulus cues. Clearly, a more comprehensive

understanding of the factors that determine whether a blocking effect is attentionally

mediated is needed.

Turning to the relationship between WMC and categorization, our study found

evidence that WMC was related to category learning in both experiments. In addition,

WMC predicted knowledge restructuring. The abrupt changes in performance in our

knowledge restructuring task relate closely to other tasks that require set-shifting of

various kinds. To date, the evidence that set-shifting relates to WMC has been

surprisingly weak. Oberauer et al. (2003) found only weak relationships between
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set-shifting ability and performance on a number of standard working memory tasks (e.g.,

reading span). Similarly, Miyake, Friedman, Emerson, Witzki, and Howerter (2000) found

only weak relationships between set-shifting and operation span performance. In

reconciling our results with those of Miyake et al. (2000) and Oberauer et al. (2003), it is

useful to refer to the distinction made by Cools, Ivry, and D’Esposito (2006) between

shifts that involve concrete aspects of a task (e.g., responding on the basis of different

stimulus features on different trials) vs. those that involve abstract aspects of a task (e.g.,

responding on the basis of a different rule from a previous trial). The former type of shift

involves a change in the stimulus to be responded to. That is, a different stimulus will

drive responding on different trials, but the response rule might stay the same. The latter

type of shift involves applying different response rules to the same stimulus at different

times. The tasks used by Miyake et al. (2000) and Oberauer et al. (2003) involved one or

the other type of shift. By contrast, our Experiment 2 required shifting between

qualitatively different ways of coordinating common categorization rules: Participants had

to shift between rule sets on a trial-by-trial basis (i.e., shifting between bar position and

rectangle height rules), but also had to shift between response strategies that involved

different stimulus features (i.e., using context or bar position to select a rule). Resolution

of the sorts of set-shifting that do and do not relate to WMC awaits further research.

Another aspect of performance in our knowledge restructuring task was the “gating”

function played by different stimulus dimensions under different categorization strategies.

For example, the KP strategy required people to categorize stimuli on the basis of either

the rectangle height or bar position dimensions depending on the context dimension.

Thus, certain stimulus dimensions were not always directly relevant for categorization, but

were nevertheless useful in that they indicated other dimensions that were directly relevant

for categorization (cf. Blair, Watson, Walshe, & Maj, 2009). Given that WMC was found

to correlate with people’s ability to change the dimension they used to gate rule use, it is



Attention and Working Memory Capacity 50

possible that WMC might only underpin categorization strategies that involve such

dimensional gating. However, Craig and Lewandowsky (in press) have explored strategy

use in a number of categorization tasks and found no relationship between WMC and the

categorization strategy people ultimately used (though categorization accuracy was

related to WMC, much as we report here, regardless of which strategy people ultimately

chose). Clarification of how categorization strategy, coordination of representations, and

WMC interrelate is, in our view, a very worthy target for future research.

Conclusions

Attention is a central but heterogeneous theoretical construct in the areas of

category learning and working memory. Despite this apparent overlap, it has remained

unclear whether constructs included under the rubric of attention generalize across

research domains. Recent studies investigating the relationship between WMC and

dimensional attention in categorization have been unable to find a reliable link (e.g., Craig

& Lewandowsky, in press; Lewandowsky, 2011; Lewandowsky et al., under review),

suggesting differences beteween attentional constructs in category learning and working

memory theorizing. We have shown that WMC is related to a different form of attention

in categorization that controls the coordination of multiple category representations. The

latter property is only likely to manifest in more complex categorization tasks that involve

top-down selection of partial knowledge.
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Oberauer, K., Süß, H.-M., Schulze, R., Wilhelm, O., & Wittman, W. W. (2000). Working

memory capacity — facets of a cognitive ability construct. Personality & Individual

Differences, 29 , 1017-1045.

Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. (2007). Individual differences in

working memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold,

M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory

(p. 49-75). Oxford: Oxford University Press.
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Appendix A

Fit of EXIT to Experiment 1 Data

We investigated the lack of correlation between blocking and highlighting effects via

computational modeling with EXIT (Kruschke, 2001b). EXIT comprises an associative

network that connects cues to outcomes. The model also incorporates a complex

attentional mechanism that combines rapid attention shifts upon presentation of a

stimulus with long-term attentional learning across trials. Our guiding question was why

the blocking-highlighting correlation was absent from our data. One possibility is that our

participants differentially relied on attention across the two tasks. Kruschke et al. (2005)

showed via simulations with EXIT that the model could generate a positive correlation

between blocking and highlighting effects if its attentional mechanisms were engaged in

both tasks. However, their Figure 2 reveals that within the model, dimensional attention

was only actually required to generate a highlighting effect. By contrast, blocking effects,

although increased by attention, arise as a more fundamental consequence of the model’s

error-driven learning mechanism. This is theoretically unsurprising, as EXIT contains a

form of the Rescorla and Wagner (1972) model as a special case (Kruschke, 2001b), and

that model suffices to produce blocking effects without dimensional attention, through

error-driven learning only. It follows that if our participants performed the blocking task

by exclusively relying on an associative learning mechanism, but recruited both

attentional and associative mechanisms to perform the highlighting task, no correlation

between blocking and highlighting effects would be expected. We next provide a brief

overview of EXIT (Kruschke, 2001b, 2001a, provides complete details).

EXIT combines error-driven association learning with rapid shifts of attention in a

connectionist framework (cf. Kruschke & Johansen, 1999). As discussed by Kruschke

(2001b), when EXIT’s attentional system is active, the model essentially includes
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Mackintosh’s (1975) as a special case; similarly, when the attentional system is inactive,

EXIT reduces to a form of the Rescorla and Wagner (1972) model. On a given trial, the

model responds on the basis of learned associations between cues and response outcomes.

When corrective feedback is encountered, attention is rapidly shifted away from cues that

generated prediction error and onto cues that lead to more accurate performance. The

extent of attention shifting is governed by a shift parameter, λg. After an attention shift

has occurred, association weights are updated such that learning of cue-outcome

associations is focused on cues that will maximize performance. The extent of association

learning is governed by a learning rate parameter, λw. In addition to its rapid attention

shift mechanism, EXIT also incorporates an attention learning mechanism that is tied to

exemplar memory (cf. Kruschke, 1992). The rationale is that different attentional

distributions may be suitable for different stimulus configurations (e.g., Aha & Goldstone,

1992). Thus, EXIT attempts to learn the post-shift distribution of dimensional attention

so it can be applied when the stimulus is next encountered. The extent to which the

model learns the shifted distribution of dimensional attention is governed by an attention

learning parameter, λx, and the degree to which the shifted attention distribution is tied

exclusively to a given stimulus is determined by an exemplar specificity parameter, c.

To summarize, EXIT has three parameters that relate to dimensional attention:

The attention shift parameter, λg, the attention learning parameter, λx, and the exemplar

specificity parameter, c. Cue-association learning is controlled by the λw parameter. In

addition to these parameters, EXIT also includes a normalizing constant used when

computing attention weights, P , and a decision parameter, φ, which converts response

node activations to choice probabilities.

To capture our assumptions that the role of attentional and associative mechanisms

may have differed between the blocking and highlighting tasks, we allowed the three

attention parameters (λg, λx, and c) and the association learning parameter (λw) to
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assume task-specific values. We fit EXIT directly to the choice probability data for each

unique combination of cues presented at test. Parameters were estimated by minimizing

the (negative) multinomial log likelihood statistic, -lnL =-
20∑
i=1

4∑
j=1

dij ln(pij). The outer

summation over i indexes the different cue combinations presented at test. The inner

summation over j indexes the 4 response outcomes, and pij and dij correspond,

respectively, to the predicted proportion and observed frequency of outcome j responses

for cue combination i. Best fitting parameters are presented in Table A1.

EXIT provided an excellent fit to the combined blocking and highlighting data,

RMSD = .0263. The pattern of parameter values are readily interpreted: Attention was

clearly not required to fit the blocking data, whereas association learning was; best fitting

values for λg,B, λx,B, and cB were all approximately 0, whereas λw,B was 1.98. It is

noteworthy that under this set of parameter values, when EXIT’s attentional mechanisms

are inactive, the model closely approximates the Rescorla and Wagner (1972) model (see

Kruschke, 2001b, for discussion). To fit the highlighting data, by contrast, EXIT required

both attentional and associative mechanisms to be active; λg,H , λx,H , cH , and λwH were

all greater than 0. To confirm that this level of theoretical flexibility was necessary to

explain the data, we also fit a restricted version of EXIT that did not allow attention and

association parameters to vary across tasks. Although this model was able to reproduce

all qualitative patterns in the data, quantitatively the restricted model fit significantly

worse than the more general model discussed above, -lnL = 4930.69, RMSD = .0878,

∆χ2(4) ≈ -2 lnLrestricted + 2 lnLgeneral = 601.06, p < .05. Best fitting parameters for the

restricted model were: c = 1.51, φ = 4.84, P = 1, λg = .11, λx = .0002, λw = .64. Taken

together, the modeling shows that, at least in our experiment, the blocking and

highlighting effects arose from different mechanisms; the former were associative, the

latter, attentional.
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Appendix B

Extended Analysis of Experiment 1

Lewandowsky (2011) recently reported a robust correlation between WMC on the

one hand and associative learning rate on the other. In light of Lewandowsky’s result, and

given that our blocking effect was driven by associative learning factors, the failure of

blocking performance in Experiment 1 to load onto the Errors latent variable is striking.

We suggest that the reason blocking failed to load onto the latent variable is because the

conventional measure of blocking used by both Kruschke et al. (2005) and us, is

insensitive to important aspects of the associative history of the stimulus. We show in this

extended analysis that if the blocking measure is modified to account for associative

history, performance loads onto the latent variable in the expected manner.

Recall that in Experiment 1, a pair of cues was presented on each test trial in the

blocking task. Each cue had an associative history with a distinct outcome. For example,

the cues comprising the test compound B1.D1, were trained with outcomes X1 and Y1

respectively. People had to respond to those items by choosing among 4 possible outcomes:

X1, X2, Y1, and Y2. Thus, there were always 2 outcomes that were relevant to the cues

(i.e., outcomes trained with the cues) and 2 outcomes that were irrelevant to the cues (i.e.,

outcomes never trained with the cues). Blocking was measured by examining the relative

rates of generating relevant response outcomes. For example, for the test item B1.D1,

only outcomes X1 and Y1 were considered, whereas X2 and Y2 responses were effectively

omitted from the calculation. If excluding irrelevant responses obscures the associative

nature of the effect, a modified performance index that incorporates this information

would be expected to relate to WMC, and thus load on the Error latent variable.

We constructed alternative performance indices that were similar to the AmCc and

DmBc measures reported in the main text. However, instead of taking the difference
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between the number of relevant X and Y responses, we summed the number of relevant

responses before dividing by the number of test items, thus yielding an index of the

number of relevant responses made to test stimuli. Because the modified measures

effectively assess the combined associative strength of all stimulus cues in the display with

their trained outcomes relative to untrained outcomes, they do not assess attentional

effects like the standard measures do. We summed the modified component measures to

get an overall relevance index for blocking and highlighting, respectively, which we used as

manifest variables to replace Blocking and Highlighting (cf. Figure 3). This revised SEM

model, with the correlation between error terms of the two relevance measures freely

estimated, fit well, χ2(32) = 44.85; CFI = .953; RMSEA = 0.058, 90% CI = [0.0, 0.095],

SRMR = .0598. The loadings of the blocking (p < .0001) and highlighting (p = .061)

relevance measures on the Error latent variables imply that the failure of the conventional

blocking measure to load onto the Error latent variable arose because the measure ignored

an important associative aspect of performance. When the measure is augmented to take

this associative aspect in account, it loads onto the latent variable as expected. Thus, the

apparent discrepancy between our Experiment 1 results and those of Lewandowsky (2011)

can be attributed to a limitation in the way blocking is conventionally measured.
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Appendix C

Correlation Matrices for all Manifest Variables Used in the

Structural Equation Models in both Experiments

[Tables B1 and B2 to go here]
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Notes

1 For convenience, we discuss selection of a category representation as if it were an

all-or-none process, but note that more flexible weighting schemes are used in practice.

We further elaborate on the distinction between dimensional and representational

attention when we introduce Experiment 2.

2 Although “attention” in these kinds of tasks can be decomposed into dimensional

attention on the one hand and cue- or feature-based attention on the other (e.g., Kalish,

2001; Johansen et al., 2010), we couch our discussion of blocking and highlighting effects

in terms of dimensional attention. It is noteworthy though that when stimuli are

comprised of cues that can be present or absent (as in Experiment 1, along with most

investigations of blocking and highlighting), stimulus dimensions become indistinguishable

from stimulus features.

3 The highlighting effect was first reported by Medin and Edelson (1988) as an

inverse base rate effect, so-called because their study involved only a single training phase

with the base rates of stimuli analogous to I.pE → E and I.pL → L differing according to

a 3:1 ratio. It is now known that unequal base rates are not required to produce the effect

(Kruschke, 2009), and hence the more appropriate term “highlighting” is used to refer to

the phenomenon.

4 For the model to be estimable, the residual variance for MU had to be fixed at 0.

This proved unnecessary for the structural model, and we are therefore not overly

concerned about this constraint.

5 We also investigated models that included the “pure” measures of blocking and

highlighting as manifest variables (i.e., DmBc and pLmpEc). These component measures,

like the other measures we examined in the main text, failed to load onto the latent

variable.
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6 Technically, there are multiple CI strategies. Rule selection could be determined by

position along the y axis, or through some combination of x and y positions. We describe

the strategy in relation to the x axis because we experimentally controlled strategy use via

direct instructions.

7 The category learning data from the first 48 participants were analyzed and

modeled in the aggregate and reported elsewhere (Sewell & Lewandowsky, 2011). That

initial report did not include any WMC results or individual-differences analysis and also

did not include the data of the remaining 58 participants.

8 One procedural factor that may have contributed to the discrepancy was that we

trained people for a fixed number of trials in Experiment 1. By contrast, Kruschke et al.

(2005) trained people to an accuracy criterion. Although use of accuracy criteria to assess

task mastery can be fraught with problems (e.g., Tharp & Pickering, 2009), the fact that

we were able to reproduce blocking and highlighting effects at asymptotic levels of

performance allays these concerns.
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Table 1

Typical blocking and highlighting designs. Typical responses to test items are shown in

parentheses.

Phase Blocking Highlighting

Early A→X F→Y I.pE→E

Late A.B→X C.D→Y I.pE→E I.pL→L

Test B.D→? (Y) B.C→? (Y) pE.pL→? (L)

A.C→? (X) A.D→? (X) I→? (E)
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Table 2

Details of the blocking design used in Experiment 1. The ordering of cues in the table reflects

their left-right positioning on the screen in the experiment. The “ ” symbol denotes a cue

position that was unoccupied. Stimuli unique to the test phase are divided into two classes:

B.(C/D)→? and A.(C/D)→?; see text for details.

Phase Trial Items Duration

Early A1. →X1 .A1→X1 F1. →Y1 .F1→Y1
10 × 8 trial blocks

A2. →X2 .A2→X2 F2. →Y2 .F2→Y2

Late A1.B1→X1 B1.A1→X1 C1.D1→Y1 D1.C1→Y1
10 × 8 trial blocks

A2.B2→X2 B2.A2→X2 C2.D2→Y2 D2.C2→Y2

Test Training Stimuli Shown at Test (presented twice each)

48 trials

A1.B1→X1 B1.A1→X1 C1.D1→Y1 D1.C1→Y1

A2.B2→X2 B2.A2→X2 C2.D2→Y2 D2.C2→Y2

Test Stimuli: Class B.(C/D)→?

D1.B1→? B1.D1→? D2.B2→? B2.D2→?

D2.B1→? B1.D2→? D1.B2→? B2.D1→?

C1.B1→? B1.C1→? C2.B2→? B2.C2→?

C2.B1→? B1.C2→? C1.B2→? B2.C1→?

Test Stimuli: Class A.(C/D)→?

A1.C1→? C1.A1→? A2.C2→? C2.A2→?

A1.C2→? C2.A1→? A2.C1→? C1.A2→?

A1.D1→? D1.A1→? A2.D2→? D2.A2→?

A1.D2→? D2.A1→? A2.D1→? D1.A2→?
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Table 3

Details of the highlighting design used in Experiment 1. The ordering of cues in the table

reflects their left-right positioning on the screen in the experiment. The “ ” symbol denotes

a cue position that was unoccupied. Stimuli unique to the test phase are divided into two

classes: I. →? and pE.pL→?; see text for details.

Phase Trial Items Duration

Early I1.pE1→E1 pE1.I1→E1
3 × 8 trial blocks

I2.pE2→E2 pE2.I2→E2

Late(1) I.pE shown 3 times each: I.pL shown 1 time each:
3 × 16 trial blocks

I1.pE1→E1 pE1.I1→E1 I1.pL1→L1 pL1.I1→L1

I2.pE2→E2 pE2.I2→E2 I2.pL2→L2 pL2.I2→L2

Late(2) I.pE shown 1 time each: I.pL shown 3 times each:
6 × 16 trial blocks

I1.pE1→E1 pE1.I1→E1 I1.pL1→L1 pL1.I1→L1

I2.pE2→E2 pE2.I2→E2 I2.pL2→L2 pL2.I2→L2

Test Training Stimuli Shown at Test (shown 1 time each)

24 trials

I1.pE1→E1 pE1.I1→E1 I1.pL1→L1 pL1.I1→L1

I2.pE2→E2 pE2.I2→E2 I2.pL2→L2 pL2.I2→L2

Test Stimuli shown 2 times each

Class I. →? Class pE.pL→?

I1. →? .I1→? pE1.pL1→? pL1.pE1→?

I2. →? .I2→? pE2.pL2→? pL2.pE2→?
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Table 4

Performance on the Working Memory Tasks in Experiment 1

Measure MU OS OSpt SS SSpt SSTM

Mean 0.59 0.71 0.91 0.68 0.91 0.86

SD 0.19 0.14 0.08 0.16 0.06 0.06

Maximum 1.00 1.00 1.00 1.00 1.00 1.00

Minimum 0.16 0.16 0.16 0.16 0.16 0.16

Kurtosis 2.26 3.14 28.87 3.78 4.76 3.38

Skewness -0.07 -0.60 -3.97 -0.82 -1.18 -0.48

SEM weights 1.00 0.56 0.55 0.44

Legend. MU, Memory Updating; OS, Operation Span; SS, Sentence Span; pt denotes

processing tasks; SSTM, Spatial Short-Term Memory.

Note. SEM weights refer to standardized regression weights (also known as loadings) for

the four tasks in the WMC measurement model.
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Table 5

Cronbach’s αs for overall indices of blocking and highlighting, and stimulus subsets

comprising their component measures.

Blocking B.(C/D) A.(C/D) Highlighting pE.pL I.

Cronbach’s α .76 .64 .64 .57 .52 .53
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Table 6

Means, standard deviations, skewness, and kurtosis for manifest variables from the blocking

and highlighting tasks. All error measures were log transformed.

Mean SD Skewness Kurtosis

Blocking Early Errors 1.26 0.71 0.32 0.63

Blocking Late Errors 0.79 0.69 .51 -0.37

Highlighting Early Errors 0.56 0.50 0.57 0.40

Highlighting Middle & Late Errors 1.29 0.82 0.32 -0.001

Blocking Effect 0.62 0.63 0.34 -0.79

Highlighting Effect 0.67 0.68 0.21 -0.48
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Table 7

Performance on the Working Memory Tasks in Experiment 2

Measure MU OS OSpt SS SSpt SSTM

Mean 0.62 0.74 0.93 0.71 0.92 0.87

SD 0.16 0.11 0.04 0.13 0.05 0.04

Maximum 0.99 0.99 0.99 0.99 0.99 0.99

Minimum 0.19 0.19 0.19 0.19 0.19 0.19

Kurtosis 2.38 2.81 6.48 4.83 4.64 2.50

Skewness -0.31 -0.30 -1.31 -0.88 -1.25 -0.46

SEM weights 0.71 0.54 0.56 0.56

Legend. MU, Memory Updating; OS, Operation Span; SS, Sentence Span; pt denotes

processing tasks; SSTM, Spatial Short-Term Memory.

Note. SEM weights refer to standardized regression weights (also known as loadings) for

the four tasks in the WMC measurement model.
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Table 8

Means, standard deviations, skewness, and kurtosis for manifest variables from the

knowledge restructuring task. All error measures were log transformed.

Mean SD Skewness Kurtosis

Session 1 Early Errors 2.38 0.88 -0.03 -0.77

Session 1 Late Errors 1.03 1.12 .92 -0.21

Session 2 Errors 1.36 0.80 0.29 0.04

Session 1 Extent of Restructuring 0.74 0.29 -1.23 0.71

Session 2 Extent of Restructuring 0.73 0.32 -1.25 0.45
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Figure Captions

Figure 1. Schematic overview of stages of processing involved in categorization. Points at

which attentional mechanisms might operate are drawn as dashed boxes; see text for

details. Perceptual processes provide raw inputs along a number of stimulus dimensions.

Dimensional attention then weights the input dimensions. When multiple category

representations are available, representational attention is used to select a suitable

category representation. The selected representation is then activated by the weighted

dimensional input, usually on the basis of similarity. A category decision is then made on

the basis of the activation pattern, resulting in a response.

Figure 2. Schematic of an example blocking trial. Stimulus words are presented toward

the top of a computer screen. The four response options are presented toward the bottom

of the screen. Participants indicated their response via mouse click.

Figure 3. Structural model for Experiment 1. Standardized estimates and all statistically

significant paths are presented in bold.

Figure 4. Illustration of the distinction between dimensional and representational

attention. Attentional effects are shown as boldfaced associative connections. The top

panel shows a case involving only dimensional attention. Connections from input

dimensions D1 and D2 to the exemplar nodes (triangles) are selectively enhanced by being

weighted more heavily than D3. The bottom panel shows a case involving both

dimensional and representational attention. The pattern of connections from inputs to

exemplars from the top panel are reproduced in the left-hand side of the bottom panel.

The effects of representational attention are shown via the enhanced associations from

individual exemplars to the various representational mappings. Exemplars 1 and 2 gate

access to representation R1, whereas Exemplars 3 and 4 gate access to representation R2.
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Each representation summarizes a stimulus-response mapping (e.g., an associative matrix,

such as the one shown in the shaded rectangle in the top panel).

Figure 5. Category space used in Experiment 2. The abscissa describes the position of a

vertically oriented bar along the base of the stimulus (relative to the center of the

stimulus). The ordinate denotes rectangle height. Filled diamonds denote training stimuli,

open squares denote transfer stimuli. Solid lines are the partial rule boundaries. Dashed

lines divide the space into four diagnostic quadrants, which are numbered in the figure.

Two example stimuli are shown underneath the category space.

Figure 6. Ideal response profiles associated with the context-insensitive (CI; top row) and

knowledge partitioning (KP; bottom row) strategies. Performance in the left and right

contexts are shown in the left and right columns of panels, respectively.

Figure 7. Item-wise P(A) in each context in the first transfer test for the KP-first and

CI-first conditions in Experiment 2. Darker levels of shading correspond to higher P(A).

Shading varies in steps of .1.

Figure 8. Context sensitivity across all transfer tests in Experiment 2 for the KP-first and

CI-first conditions.

Figure 9. Structural model for Experiment 2. Significant correlations and factor loadings

(all standardized estimates) are presented in bold.
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