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ROBUST MULTIDIMENSIONAL SCALING 

IAN SPENCE AND STEPHAN LEWANDOWSKY 

UNIVERSITY OF TORONTO 

A method for multidimensional scaling that is highly resistant to the effects of outliers is 
described. To illustrate the efficacy of the procedure, some Monte Carlo simulation results are 
presented. The method is shown to perform well when outliers are present, even in relatively 
large numbers, and also to perform comparably to other approaches when no outliers are 
present. 
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1. Introduction 

In recent years, much attention has been paid to the topic of robust estimation. 
This is partly due to the fact that there is a considerable body of evidence to suggest that 
estimation techniques which presume Gaussian errors--for example, classical least 
squares---do not perform well when the data are contaminated by outliers. Proximity 
judgments, which form the basic data for most applications of multidimensional scaling 
procedures, may be particularly susceptible to the problem of outlying observations. In 
addition to the usual difficulties of detecting and eliminating transcriptional and data 
entry errors, there is often the problem of subject boredom while making large numbers 
of judgments, leading to erratic performance in some cases. Another not uncommon 
error may occur when a subject occasionally misuses a rating scale, perhaps inadvert- 
ently reversing the direction. Further, some judgments are intrinsically more difficult to 
make and it is not unreasonable to suppose that the error distributions associated with 
these have larger variances. Consequently, instead of dealing with a single error dis- 
tributionwas is at least implicitly assumed by most procedures--we may be faced with 
a mixture of distributions, whether Gaussian or not. Therefore, Spence (1982), Null and 
Sarle (1982), and Heiser (1987) have argued the need for multidimensional scaling 
algorithms that are resistant to the effect of outliers. 

As demonstrated below, even a single outlier may dramatically distort a multidi- 
mensional scaling solution when traditional metric scaling is employed. It is also shown 

"that other varieties of multidimensional scaling may be adversely affected by outliers. 
However, a robust multidimensional scaling program, based on the algorithm described 
below, is shown to be little affected by outliers, even in relatively large numbers, and, 
furthermore, seems to perform adequately when no outliers are present. 

2. The Fragility of the Traditional Method of Least Squares 

The oldest method of multidimensional scaling is based on the work of Young and 
Householder (1938) and Torgerson (1958). It is also probably the most widely used 
method because, although nonmetric procedures may have largely supplanted classical 
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FIGURE 1 
Recovery of perfect data with a single simulated data entry error (d47 multiplied by 10) using classical metric 

scaling. 

metric scaling, almost all the currently popular programs employ some variant of the 
Young-Householder-Torgerson procedure as a starting configuration. Obviously, if the 
traditional approach is sensitive to aberrant data points, then this has implications for 
programs that use it as their first approximation to a solution. 

A single outlier in otherwise perfect data may be simulated by multiplying a ran- 
domly chosen proximity by a constant to mimic the effect of incorrect column entry. A 
configuration consisting of nine points randomly selected in the unit plane was used to 
create a matrix of interpoint distances to be used as input to a metric multidimensional 
scaling routine. One of the distances, specifically d47, was perturbed by multiplying it 
by 10, before scaling the matrix. These data, perfect in every respect bar one, were 
subjected to the Young-Householder-Torgerson procedure and the results are shown in 
Figure 1. 

The effect of a single outlier is disastrous, and the result is precisely analogous to 
what can happen with almost perfectly linear data in ordinary least squares. As dem- 
onstrated by the "Andrews case" (see Mosteller & Tukey, 1977, p. 212), a single bad 
data point can exert considerable leverage on the fitted line, rendering least squares 
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estimates of the relevant parameters virtually useless. With bivariate data the aberra- 
tion is easily detected in the scatterplot, but is rather more difficult to discover when 
there are several explanatory variables. Similarly, if outliers are present in multidimen- 
sional scaling, some work is necessary to discover the problemmat a minimum, the 
distribution of residuals must be carefully examined, but even then the outliers may not 
be very evident (Huber, 1981, p. 155). 

Since the classical method is so fragile, it seems sensible to try to find more 
resistant techniques. 

3. An Algorithm for Robust Parameter Estimation 

In two way multidimensional scaling, we desire a representation such that *dij - 
d/j = e0., where *dij is the dissimilarity between objects i and j,  and d O. is the distance 
between points i and j: 

m 

= E (x, .  - xi . )  2, 
a = l  

where a indexes the m dimensions of the euclidean representation and Xia is the coor- 
dinate of the i-th point on the a-th dimension. The eij are the discrepancies between the 
data and fitted distances. Assume that we have provisional values for all coordinates 
and that we wish to improve the typical coordinate, Xkb. If the problem of error is 
ignored, the solution of the following set of equations in the coordinates is suggested, 

] f ( X k b )  = *dkj - dkj = *dkj - (Xka -- Xj~) 2 = 0, 
a = l  

f o r j  ~ k = 1, 2 . . . . .  n. The use of Newton's method (e.g., Luenberger, 1984) for 
solving such equations leads to the following iterations (indexed by t), where the prime 
denotes the first derivative with respect to the k b - t h  coordinate: 

f xf, b) 
t + l  _ t 

X k b  - -  X k b  - -  _ _  
f '  (Xtkb) 

l t ( * dkj - d~j)dkj 
= X t k b  

= Xtkb + jgtkb. 

For any coordinate, X~b, there are several possible corrections, t j g k b ,  one for each j 
k. Since the data are typically not free of errors, some of these corrections will be too 
large and others too small. Therefore the corrections are averaged. The median yields 
an averaged correction that is not influenced by outliers in the data, in exactly the same 
way that the univariate median is robust. The median is taken over all j ~ k: 

X~b +l = X~b + m e d  (jg~o) 
j ~ k  

= Xtkb + gtkb, 
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where g~b is used to denote the median of the possible corrections. As usual, some 
modification of the step size in the direction of the vector of corrections will speed 
convergence. The step size is computed as 

t Ot 
gt'  

where g t  is the relative magnitude of the vector of corrections: 

~ i a  (g[a)2~ 1/2 

g t=  __ /X<ia / 
L i,a J 

The quantity a t may be chosen in several ways. One choice that has been found to be 
reasonably satisfactory, and does not require any function evaluation, is based on a 
multi-variable generalization of Aitken's 6 2 method (Ramsay, 1975): 

O~ t+l = Ot 

I ~ (X t -  1 -- X t-2~2 ]1/2 
t i,a 

7-t . . . .  "~- ~-- _-~- 2 2 ' 
Z (Xia -- 2Xia + Xia ) 
i,a 

where o~ is revised after every third iteration. Hence the algorithm is given by 

= + tg'kb. 

The above is easily modified to accommodate changes in the model. For example, 
if an additive constant is allowed: 

*dij = d o - c.  

This requires the following modification of the algorithm 

x ~  l :  X~b +/3 '  med [ , ( * d ~ - - d ~ + c t ) d ~ j ]  

and, 

c t + 1 = c t _ med med (*d U - dtu + ct) 
i j~i  

= med med (*dij  - d~).  
i j~l  

For the additive constant correction, either "medi medici" or "medi<j" may be used. 
The former is somewhat more economical of storage. Note that no step size adjustment 
is used with the correction to the additive constant--extensive experimentation has 
shown this to be unnecessary. 
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4. A Starting Configuration 

Although the algorithm described above generally performs reasonably well when 
started from a randomly selected position, there is no doubt that the likelihood of being 
trapped in a locally suboptimal position is much less if the starting configuration is close 
to the optimum. The suboptimal solution problem is ubiquitous with iterative methods 
and practical experience in many situations has shown that the best insurance against 
the problem is to have a starting position that is not too far from the optimum. 

The classic Young-Householder-Torgerson scaling solution provides a poor start. 
As shown by the illustration in section 2, the procedure is very sensitive to the effect 
of outliers, and indeed turns out to be a poorer starting position than a random con- 
figuration. The starting configuration that is used here is simple and may be quickly 
computed. First, the data are replaced by their ranks, and then traditional Young- 
Householder-Torgerson scaling is performed. Subsequently, the scale of the recovered 
configuration is adjusted such that 

med (*dij + c °) = m e d  (d° ) ,  
i < j  i< j  

where the superscript zero indexes iteration zero, and c o is a robust starting estimate 
of the additive constant suggested by Torgerson's (1958) unidimensional subspace 
method: 

c o = med med med (*dij- *dix- *djl). 
i j ~ i  l ~ i , j  

5. A Robust Index of Fit 

Several measures of fit could be devised. The following bears an obvious and 
natural relationship to the iterative method, and has a simple interpretation, if multi- 
plied by 100, as the median percentage discrepancy between the input data and the 
distances recovered. The index is called TUF to denote the idea of toughness or 
resistance in the face of badly behaved errors: 

TUF = m e d  m e d (  1 - d/j ~. 
i \1 *du / 

6. The Simulation 

We examined the performance of several programs for multidimensional scaling in 
situations where the data were contaminated by the presence of outliers. This was done 
for two reasons. First, we wanted to see whether existing procedures would be ad- 
versely affected by outliers, and second, we wished to establish some basis for an 
evaluation of the present method. The comparisons described below are for the pur- 
poses of illustration only and are not intended to provide a comprehensive comparative 
evaluation of the different algorithms examined. The simulation is restricted in scope, 
and it is entirely possible that under other conditions the relative performance of the 
programs could be rather different. In addition, programs undergo changes over the 
years, and may include different features and rely on different algorithms by the time 
the reader sees this article. 
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The programs used were: (i) traditional Young-Householder-Torgerson metric 
scaling (Young & Householder, 1938; Torgerson, 1958), (ii) KYST-2 (Kruskal, Young, 
& Seery, 1978), in both metric (M) and nonmetric (NM) modes, (iii) ALSCAL-4 (Ta- 
kane, Young, & de Leeuw, 1977; Young & Lewyckyj, 1981) in only its n0nmetric model 
(NM), (iv) MULTISCALE II (Ramsay, 1977; 1982), and (v) our program TUFSCAL 
(for tough scaling). Some of these procedures are capable of fitting more than one 
model, and one program (MULTISCALE) even permits the specification of different 
error distributions. However, in order to make the simulation as similar as possible 
across different procedures, the data were generated using a linear model with no 
intercept. All procedures can fit this model, and indeed, classical metric scaling re- 
o,.ires it. Notwithstanding, all procedures, except Young-Householder-Torgerson met- 
tic scaling, must estimate constants of scale, location, and even curvature, but this 
should not significantly affect their ability to recover configurations where the relation- 
ship between the data and the distances if of the form *d(/= d/j + e~/. 

It is not possible to choose the error distribution in a completely equitable fashion. 
Only MULTISCALE is explicit with regard to error: either lognormal or normal den- 
sity functions on the distances may be selected. TUFSCAL, as a median based esti- 
mation procedure, requires no strong assumptions regarding the distribution of errors. 
The Young-Householder-Torgerson procedure should perform best when the errors are 
Gaussian on the scalar products, since the least squares fit is to the scalar products, but 
it is not clear what this implies about the error distribution on the distances. KYST(M) 
should perform well when the errors on the distances are Gaussian, since the distances 
are fit directly using least squares. However, in the case of nonmetric scaling routines 
such as KYST(NM) or ALSCAL(NM), it is ditficult to know what conditions are to be 
preferred, with respect to the distribution of errors. Hence the choice of error model for 
the simulations was arbitrary: the lognormal was chosen as the error distribution be- 
cause it is a plausible model for many psychological situations (Ramsay, 1977; 1982), 
and in many cases may be more appropriate than the Hefner model (Zinnes & MacKay, 
1983) which has been very popular in simulation studies over the last 20 years. 

The experiment was similar to many previous Monte Carlo simulations in the area 
of multidimensional scaling (Spence, 1983) and was comprised of two separate studies. 
In the first, only one known configuration was used in all conditions. This consisted of 
21 points in two dimensions arranged in the fashion of a cross; the arms of the cross 
were each 1.0 units long, and the five individual points on any arm were equidistant 
from each neighboring point. The center point was at the origin of the space. The reason 
for choosing this arrangement was for ease of graphical presentation of the results. 

The experimental design for the first study was a 6 × 5 × 2 factorial layout with five 
replications per cell. The factors were: 

A. Procedure: ALSCAL(NM), KYST(M), KYST(NM), MULTISCALE, TUFS- 
CAL, or Y-H-T. All default stopping criteria were set to values that were unattainable, 
except in the case of perfect fit to the data, and thus the default maximum number of  
iterations permitted usually determined the stopping point. 

B. Percentage of Outliers: 0, 5, 10, 20, or 40 percent of the 210 distances were 
contaminated. 

C. Background Error: either zero or a moderate amount--see below. The data 
input to each of the procedures was generated as follows: 

I. Euclidean interpoint distances among the points in the cross were calculated. 
2. Distances were classified as outliers, or not, by randomly shuffling the distances 

(Knuth, 1969, p. 125, Algorithm P) and then selecting the first p percent to be outliers, 
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where p varied between 0 and 40, as noted above. All simulations used the random 
uniform generator GGUBFS (IMSL, 1980). 

3. Pseudo random lognormal error was added to the distances by multiplying each 
true distance by an exponentially transformed pseudo random Gaussian generated by 
the polar method (Knuth, 1969, p. 104, Algorithm P; see also Ramsay, 1977). If a 
distance was classified as an outlier, the error standard deviation was equal to 2.0. For 
the remaining distances the error standard deviation was either zero (in the no back- 
ground error condition), or 0.4 (in the moderate background error condition). 

Each procedure received exactly the same input data and 6 × 5 x 2 × 5 = 300 
separate scalings were performed, in two dimensions only. 

The purpose of the second study was to check that the results of the first study 
were not idiosyncratic to the type of configuration used, and also to examine the 
behavior of TUFSCAL in other dimensionalities. The experimental design for the 
second study was similar to the first in many respects, and consisted of a 2 × 3 x 2 × 
3 factorial with three replications: 

A. Procedure: KYST(NM), TUFSCAL. 
B. Percentage of Outliers: 0, 10, or 30 percent of the distances were contaminated. 
C. Background Error: either zero or a moderate amount--as in the first study. 
D. Configuration: Random configurations of either 10 points in one dimension, 20 

points in two dimensions, or 30 points in three dimensions were used. The configura- 
tions were randomly generated by sampling the coordinates on each dimension from a 
rectangular distribution on the range ( -  1, + 1), subject to the constraint that no point be 
more than one unit from the origin. Different random configurations were used in each 
of the three replications. 

The data input to both procedures was generated in exactly the same fashion as in the 
first studywsee Points I. through 3. above. 

7. Results 

Recovery wgs assessed by computing the Pearson correlation between the known 
distances and the distances recovered by each of the programs. Figures 2 and 3 display 
the mean recovery over five replications for each of the experimental conditions in the 
first study. 

Figure 2 shows the performance of the procedures when there is no background 
error, but with a varying percentage of outliers. It can be seen that all programs 
recovered the known configuration when no outliers were present, but were less suc- 
cessful when the data were contaminated. Metric approaches were more adversely 
affected than nonmetric, with the worst performer being Young-Householder-Torg- 
erson. This is essentially a least squares procedure that operates on squared dissimi- 
larities, and hence the effect of any outlier is squared, with consequent high leverage on 
the solution. Metric procedures that operate directly on the dissimilarities, such as 
MULTISCALE and KYST(M) perform much better, but not as well as algorithms that 
employ a ranking transformation of the data, such as ALSCAL(NM) and KYST(NM). 
With up to 20 percent outliers, TUFSCAL does very well but its average performance 
falls off somewhat at 40 percent. 

In Figure 3 the influence of background error is seen. As expected, all procedures 
perform more poorly, but, with one exception, the same general pattern obtains as with 
no background error. The exception is MULTISCALE, whose performance is compa- 
rable to KYST(NM) and ALSCAL(NM), at least up to 20 percent outliers. 
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FIGURE 2 

Recovery as a function of the percentage of outliers with no background error (correlation decimal point 
suppressed). 

Averaging results over replications can hide what is possible with particular pat- 
terns of outliers. Consider, for example, what would happen if, by chance, all outliers 
happened to be in a single row/column of the data matrix. It is obvious that no proce- 
dure could recover the associated point with any accuracy. The corollary of this intu- 
itive idea suggests that with certain patterns of outliers all procedures will perform 
better than with others. But a pattern of outliers that is not relatively homogeneous is 
likely to lead to poorer performance for any algorithm. 

It is interesting to see what can happen under favorable conditions, and to this end 
we display the results of replication #2 in the no background error condition. Most 
programs did best in this replication, and this is presumably due to the fact that the 
common disposition of outliers was favorable in the sense discussed above. The re- 
covered configurations are shown in Figure 4. It should be noted that the configurations 
presented are not necessarily comparable in size. For example, with Young-House- 
holder-Torgerson in any outlier condition, the largest recovered distances are very 
much larger than the corresponding true distances, and the same problem is present, in 
lesser degree, with other programs also. If all configurations were drawn to scale, the 
overall display would be difficult to present neatly. Since we are really only interested 
in the locations of points relative to one another, all configurations have been scaled to 
fit within panels of the same size. This does result in some peculiar looking configura- 
tions where several points appear to have collapsed together. Zinnes and MacKay 
(1983) and Edwards (1986) have observed the same effect in a different context, but the 
cause is similar. 

It is clear that even with 40 percent outliers present, the performance of TUFS- 
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FIGURE 3 

Recovery as a function of the percentage of outliers with moderate background error (correlation decimal 
point suppressed). 

CAL is quite good. Although there are slight irregularities at the higher percentages, 
this does not necessarily reflect a basic inability to achieve perfect recovery when the 
percentage of outliers is high. One possible reason may be that a marginally suboptimal 
solution has been obtained, although it is probably more likely that, with the particular 
pattern of outliers in replication #2, perfect recovery is not attainable. We make this 
observation because, in other experiments, TUFSCAL has sometimes obtained a per- 
fect reconstruction of the configuration when the percentage of outliers has exceeded 40 
percent. Assigning a breakdown value to TUFSCAL is difficult, but it is probably safe 
to say that the breakdown value will exceed the percentage of outliers found in most 
data sets. 

It is interesting to see how the actual recovered configurations shown in Figure 4 
are related to the recovery correlations, and these are provided in Table 1. Configura- 
tions with associated recovery correlations of less than about 0.7 bear scant resem- 
blance to the true configuration, and indeed the quality of recovery is not particularly 
impressive whenever the correlation fails to exceed 0.9. 

It has been suggested (J. O. Ramsay, personal communication, August 18, 1985) 
that the performance of some of the programs might have been due, at least in part, to 
the fact that their starting configurations were unsatisfactory when outliers were 
present. All the programs employ some variant of the Young-Householder-Torgerson 
procedure, but only TUFSCAL replaces the data by their ranks. Since, as shown 
above, the unmodified classical metric scaling procedure does not cope well with data 
containing outliers, Ramsay's argument is plausible. The following demonstration 
shows that the quality of the start undoubtedly has some effect, but that this alone 
cannot account for the observed differences in performance. 
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Recovered configurations in Replication #2. 

Using KYST(NM) and TUFSCAL, we repeated replication Number 4 in the no 
background error condition. In this replication, TUFSCAL did well at all outlier per- 
centage levels except the highest, where TUFSCAL and KYST did not differ much in 
terms of recovery correlation. We provided both programs with the best possible start- 
ing configuration--the true configurationwand the results are shown in Table 2. It can 
be seen that KYST's performance is indeed improved, on average, when a perfect start 
is provided, but with higher outlier percentages the recovery still falls short of perfect. 
This suggests that traditional algorithms will benefit from a more robust start when 
outliers are present. TUFSCAL did not move significantly from the perfect start, and 
achieved essentially perfect recovery in all outlier conditions. This shows that the 
original solution with 40 percent outliers was suboptimal, and suggests that there is 
room for improvement in both the TUFSCAL starting position and the iterative algo- 
rithm. 

In the second study, solutions were obtained using TUFSCAL and KYST in one, 
two, and three dimensions, with random underlying configurations. The results are 
summarized in Table 3. The results are not at variance with the general pattern obtained 
in the first study, suggesting that the performance of programs is not idiosyncratic to a 
particular type of configuration, or particular number of dimensions. It should be noted 
that both procedures perform slightly worse as the number of coordinates estimated 
increases, in the presence of error. This is not surprising and is consistent with previous 
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Table 1 

511 

Recovery Correlations for Replication #2 in 

the No Background Error Condition 

Proc~ure Percentage Outliers 

0 5 10 20 40 

TUFSCAL 100 100 100 100 96 
KYST(NM) I00 85 95 80 64 
ALSCAL(NM) 100 96 95 81 49 
MULTISCALE I00 87 39 53 20 
KYST(M) 100 60 56 19 11 
Y-H-T 100 02 -19 -21 06 

Note:--Decimal points suppressed; all results rounded to 2 digits 

Monte Carlo work (e.g., Young, 1970; Spence, 1972). However, when there are no 
outliers but error in the data, KYST performs slightly better than TUFSCAL with an 
increasing number of points and dimensions. The difference is small and, at the mo- 
ment, we have no good explanation for it. In one dimension, with 0.4 error and 10 
percent outliers, KYST appears to perform quite poorly (0.70 recovery correlation): 
this is mainly due to a probable local minimum solution among the three replications. 

Table 2 

Recovery Correlations in Replication #4 with Default 

and Perfect Starts in the No Background Error Condition 

Procedure Start Percentage Outliers 

0 5 10 20 40 

TUFSCAL Default 100 100 1t30 100 80 
Perfect 100 100 100 100 100 

KYST(NM) Default I00 97 98 64 73 
Perfect 100 97 94 89 93 

Note:--Decimal points suppressed; all results rounded to 2 digits 
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Table 3 

Mean Recovery Correlations with Random Configurations 

Points/Dimensions Procedure Error S.D Percentage Outliers 

0 10 30 

lO/1 

20/2 

30/3 

TUFSCAL 0.0 100 100 100 
0.4 97 96 94 

KYST(NM) 0.0 100 93 87 
0.4 97 70 81 

TUFSCAL 0.0 100 1{30 98 
0.4 91 81 64 

KYST(NM) 0.0 100 86 71 
0.4 94 87 48 

TUFSCAL 0.0 100 100 91 
0.4 80 75 53 

KYST(NM) 0.0 100 61 53 
0.4 86 56 38 

Note:--Decimal points suppressed; all results rounded to 2 digits 

8. Discussion 

Of traditional programs, nonmetric methods seem to be most resistant to the in- 
fluence of outliers. Metric procedures generally perform worse, although MULTI- 
SCALE is almost as resistant as a nonmetric procedure, when the simulated data 
contain a moderate amount of error. Young-Householder-Torgerson scaling and 
KYST(M) are quite badly affected and probably should not be used in situations where 
outliers are likely. At least in the conditions investigated in our experiments, the 
method implemented in TUFSCAL seems to be fairly resistant. 

In view of the fact that traditional two way scaling programs may be adversely 
affected by relatively small numbers of aberrant observations, it may sometimes be 
helpful to use a resistant procedure for fitting the model. In situations where the data 
are not expected to be squeaky clean, the use of a robust method as an adjunct and 
complement to a traditional technique may be beneficial. Also, after a robust fit has 
been obtained, it is often rather easier to identify bad data points via residual analysis 
than when a conventional procedure has been used. 
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